Molecular Genetics and Genomics

, Volume 281, Issue 6, pp 609–626 | Cite as

Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family

  • Brad W. Porter
  • Maya Paidi
  • Ray Ming
  • Maqsudul Alam
  • Wayne T. Nishijima
  • Yun J. Zhu
Original Paper


The majority of plant disease resistance proteins identified to date belong to a limited number of structural classes, of which those containing nucleotide-binding site (NBS) motifs are the most common. This study provides a detailed analysis of the NBS-encoding genes of the fifth sequenced angiosperm, Carica papaya. Despite having a significantly larger genome than Arabidopsis thaliana, papaya has fewer NBS genes. Nevertheless, papaya maintains genes belonging to both Toll/interleukin-1 receptor (TIR) and non-TIR subclasses. Papaya’s NBS gene family shares most similarity with Vitis vinifera homologs, but seven non-TIR members with distinct motif sequence represent a novel subgroup. Transcript splice variants and adjacent genes encoding resistance-associated proteins may provide functional compensation for the apparent scarcity of NBS class resistance genes. Looking forward, the papaya NBS gene family is uniquely small in size but structurally diverse, making it suitable for functional studies aimed at a broader understanding of plant resistance genes.


Carica papaya Resistance genes NBS-LRR genes TIR domain CC motif Alternative splicing 



We thank Dr. Paul H. Moore for critical review of the manuscript and Mr. Ratnesh Singh and Dr. Ming-Li Wang at the Hawai’i Agriculture Research Center (HARC) for providing bioinformatics technical assistance. Funding for this project was provided by the United States Department of Agriculture (USDA), Cooperative State Research Education and Extension Service (CSREES), and Tropical and Subtropical Agriculture Research (T-STAR).

Supplementary material

438_2009_434_MOESM1_ESM.doc (204 kb)
Supplemental dataset 1 (DOC 204 kb)
438_2009_434_MOESM2_ESM.doc (38 kb)
Supplemental Fig. 1 (DOC 38 kb)
438_2009_434_MOESM3_ESM.doc (36 kb)
Supplemental Fig. 2 (DOC 36 kb)
438_2009_434_MOESM4_ESM.ppt (66 kb)
Supplemental Fig. 3 (PPT 69 kb)
438_2009_434_MOESM5_ESM.ppt (66 kb)
Supplemental Fig. 4 (PPT 68 kb)
438_2009_434_MOESM6_ESM.ppt (70 kb)
Supplemental Fig. 5 (PPT 72 kb)
438_2009_434_MOESM7_ESM.ppt (97 kb)
Supplemental Fig. 6 (PPT 100 kb)
438_2009_434_MOESM8_ESM.ppt (69 kb)
Supplemental Fig. 7 (PPT 69 kb)
438_2009_434_MOESM9_ESM.ppt (75 kb)
Supplemental Fig. 8 (PPT 75 kb)
438_2009_434_MOESM10_ESM.ppt (76 kb)
Supplemental Fig. 9 (PPT 66 kb)
438_2009_434_MOESM11_ESM.doc (34 kb)
Supplemental Table 1 (DOC 34 kb)
438_2009_434_MOESM12_ESM.doc (70 kb)
Supplemental Table 2 (DOC 70 kb)
438_2009_434_MOESM13_ESM.doc (238 kb)
Supplemental Table 3 (DOC 238 kb)
438_2009_434_MOESM14_ESM.doc (40 kb)
Supplemental Table 4 (DOC 40 kb)
438_2009_434_MOESM15_ESM.doc (35 kb)
Supplemental Table 5 (DOC 35 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21PubMedCrossRefGoogle Scholar
  3. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  4. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  5. Axtell MJ, McNellis TW, Mudgett MB, Hsu CS, Staskawicz BJ (2001) Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding Pseudomonas syringae avrRpt2 avirulence gene. Mol Plant Microbe Interact 14:181–188PubMedCrossRefGoogle Scholar
  6. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373PubMedCrossRefGoogle Scholar
  7. Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333PubMedCrossRefGoogle Scholar
  8. Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32:195–204PubMedCrossRefGoogle Scholar
  9. Chen G, Pan D, Zhou Y, Lin S, Ke X (2007) Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). J Biosci 32:713–721PubMedCrossRefGoogle Scholar
  10. Citterio S, Albertini E, Varotto S, Feltrin E, Soattin M, Marconi G, Sgorbati S, Lucchin M, Barcaccia G (2005) Alfalfa Mob 1-like genes are expressed in reproductive organs during meiosis and gametogenesis. Plant Mol Biol 58:789–807PubMedCrossRefGoogle Scholar
  11. Cordero C, Skinner Z (2002) Isolation from alfalfa of resistance gene analogues containing nucleotide binding sites. Theor Appl Genet 104:1283–1289PubMedCrossRefGoogle Scholar
  12. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedCrossRefGoogle Scholar
  13. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029PubMedCrossRefGoogle Scholar
  14. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249PubMedCrossRefGoogle Scholar
  15. Dodds PN, Lawrence GJ, Pryor A, Ellis JG (2000) Genetic analysis and evolution of plant disease resistance genes. In: Dickinson M, Beynon J (eds) Molecular plant pathology. Annual plant reviews, vol 4 M. Sheffield Academic Press, Sheffield, pp 88–107Google Scholar
  16. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893PubMedCrossRefGoogle Scholar
  17. Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506PubMedCrossRefGoogle Scholar
  18. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288PubMedCrossRefGoogle Scholar
  19. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10:1466–1472CrossRefGoogle Scholar
  20. Glynn NC, Comstock JC, Sood SG, Dang PM, Chaparro JX (2008) Isolation of nucleotide binding site-leucine rich repeat and kinase resistance gene analogues from sugarcane (Saccharum spp.). Pest Manag Sci 64:48–56PubMedCrossRefGoogle Scholar
  21. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol 9:R7PubMedCrossRefGoogle Scholar
  22. Howles P, Lawrence G, Finnegan J, McFadden H, Ayliffe M, Dodds P, Ellis J (2005) Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol Plant Microbe Interact 18:570–582PubMedCrossRefGoogle Scholar
  23. Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312PubMedCrossRefGoogle Scholar
  24. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  25. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedCrossRefGoogle Scholar
  26. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014PubMedCrossRefGoogle Scholar
  27. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  28. Jones DA, Jones JDG (1996) The roles of leucine-rich repeats in plant defences. Adv Bot Res Adv Plant Pathol 24:90–167Google Scholar
  29. Jordan T, Schornack S, Lahaye T (2002) Alternative splicing of transcripts encoding Toll-like plant resistance proteins—what’s the functional relevance to innate immunity? Trends Plant Sci 7:392–398PubMedCrossRefGoogle Scholar
  30. Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277:519–527PubMedCrossRefGoogle Scholar
  31. Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with Histone Deacetylase 19 in basal defense. Plant Cell [Epub ahead of print]Google Scholar
  32. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636PubMedCrossRefGoogle Scholar
  33. Luck JE, Lawrence GJ, Dodds PN, Shepherd KW, Ellis JG (2000) Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell 12:1367–1377PubMedCrossRefGoogle Scholar
  34. Marathe R, Anandalakshmi R, Liu Y, Dinesh-Kumar SP (2002) The tobacco mosaic virus resistance gene, N. Mol Plant Pathol 3:167–172CrossRefGoogle Scholar
  35. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240PubMedCrossRefGoogle Scholar
  36. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61PubMedCrossRefGoogle Scholar
  37. Martínez M, López-Solanilla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I (2003) Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant Microbe Interact 16:876–883PubMedCrossRefGoogle Scholar
  38. McDonnell AV, Jiang T, Keating AE, Berger B (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22:356–358PubMedCrossRefGoogle Scholar
  39. McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874PubMedCrossRefGoogle Scholar
  40. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212PubMedCrossRefGoogle Scholar
  41. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332PubMedCrossRefGoogle Scholar
  42. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834PubMedCrossRefGoogle Scholar
  43. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedCrossRefGoogle Scholar
  44. Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447PubMedCrossRefGoogle Scholar
  45. Mucyn TS, Clemente A, Andriotis VM, Balmuth AL, Oldroyd GE, Staskawicz BJ, Rathjen JP (2006) The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18:2792–2806PubMedCrossRefGoogle Scholar
  46. Mukhtar MS, Deslandes L, Auriac MC, Marco Y, Somssich IE (2008) The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J [Epub ahead of print]Google Scholar
  47. Nishijima W (2002) A new disease hits papaya. Agric Hawaii 3:26Google Scholar
  48. Opassiri R, Pomthong B, Akiyama T, Nakphaichit M, Onkoksoong T, Ketudat Cairns M, Ketudat Cairns JR (2007) A stress-induced rice (Oryza sativa L.) beta-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochem J 408:241–249PubMedCrossRefGoogle Scholar
  49. Palomino C, Satovic Z, Cubero JI, Torres AM (2006) Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 49:1227–1237PubMedCrossRefGoogle Scholar
  50. Porter BW, Aizawa KS, Zhu YJ, Christopher DA (2008) Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. Plant Sci 174:38–50CrossRefGoogle Scholar
  51. Radwan O, Gandhi S, Heesacker A, Whitaker B, Taylor C, Plocik A, Kesseli R, Kozik A, Michelmore RW, Knapp SJ (2008) Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol Genet Genomics 280:111–125PubMedCrossRefGoogle Scholar
  52. Saeki M, Irie Y, Ni L, Yoshida M, Itsuki Y, Kamisaki Y (2006) Monad, a WD40 repeat protein, promotes apoptosis induced by TNF-alpha. Biochem Biophys Res Commun 342:568–572PubMedCrossRefGoogle Scholar
  53. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  54. Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133PubMedCrossRefGoogle Scholar
  55. Sémon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512PubMedCrossRefGoogle Scholar
  56. Shan L, He P, Li J, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:17–27PubMedCrossRefGoogle Scholar
  57. Soriano JM, Vilanova S, Romero C, Llácer G, Badenes ML (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theor Appl Genet 110:980–989PubMedCrossRefGoogle Scholar
  58. Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ (2002) The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939PubMedCrossRefGoogle Scholar
  59. Tameling WI, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJ, Takken FL (2006) Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol 140:1233–1245PubMedCrossRefGoogle Scholar
  60. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  61. Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56PubMedCrossRefGoogle Scholar
  62. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  63. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  64. van der Biezen EA, Jones JD (1998a) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R227PubMedCrossRefGoogle Scholar
  65. van der Biezen EA, Jones JD (1998b) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456PubMedCrossRefGoogle Scholar
  66. van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL (2007) Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45:43–72PubMedCrossRefGoogle Scholar
  67. Warren RF, Henk A, Mowery P, Holub E, Innes RW (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439–1452PubMedCrossRefGoogle Scholar
  68. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220CrossRefGoogle Scholar
  69. Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205PubMedCrossRefGoogle Scholar
  70. Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51:803–818PubMedCrossRefGoogle Scholar
  71. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120PubMedCrossRefGoogle Scholar
  72. Xu Q, Wen X, Deng X (2008) Genomic organization, rapid evolution and meiotic instability of nucleotide-binding-site-encoding genes in a new fruit crop, “chestnut rose”. Genetics 178:2081–2091PubMedCrossRefGoogle Scholar
  73. Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008a) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280:187–198PubMedCrossRefGoogle Scholar
  74. Yang S, Gu T, Pan C, Feng Z, Ding J, Hang Y, Chen JQ, Tian D (2008b) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116:165–177PubMedCrossRefGoogle Scholar
  75. Zhang XC, Gassmann W (2003) RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15:2333–2342PubMedCrossRefGoogle Scholar
  76. Zhang XC, Gassmann W (2007) Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145:1577–1587PubMedCrossRefGoogle Scholar
  77. Zhou J, Tang X, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16:3207–3218PubMedCrossRefGoogle Scholar
  78. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Brad W. Porter
    • 1
  • Maya Paidi
    • 2
  • Ray Ming
    • 3
  • Maqsudul Alam
    • 4
  • Wayne T. Nishijima
    • 5
  • Yun J. Zhu
    • 2
  1. 1.Department of Molecular Biosciences and BioengineeringUniversity of Hawai’i at MānoaHonoluluUSA
  2. 2.Hawai’i Agriculture Research CenterAieaUSA
  3. 3.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of MicrobiologyUniversity of Hawai’i at MānoaHonoluluUSA
  5. 5.Department of Plant and Environmental Protection SciencesUniversity of Hawai’i at MānoaHonoluluUSA

Personalised recommendations