Molecular Genetics and Genomics

, Volume 281, Issue 5, pp 551–563 | Cite as

A gain-of-function screen in zebrafish identifies a guanylate cyclase with a role in neuronal degeneration

  • Lisette A. Maddison
  • Jianjun Lu
  • Tristan Victoroff
  • Ethan Scott
  • Herwig Baier
  • Wenbiao Chen
Original Paper


Manipulation of gene expression is one of the most informative ways to study gene function. Genetic screens have been an informative method to identify genes involved in developmental processes. In the zebrafish, loss-of-function screens have been the primary approach for these studies. We sought to complement loss-of-function screens using an unbiased approach to overexpress genes with a Gal4-UAS based system, similar to the gain-of-function screens in Drosophila. Using MMLV as a mutagenic vector, a cassette containing a UAS promoter was readily inserted in the genome, often at the 5′ end of genes, allowing Gal4-dependent overexpression. We confirmed that genes downstream of the viral insertions were overexpressed in a Gal4-VP16 dependent manner. We further demonstrate that misexpression of one such downstream gene gucy2F, a membrane-bound guanylate cyclase, throughout the nervous system results in multiple defects including a loss of forebrain neurons. This suggests proper control of cGMP production is important in neuronal survival. From this study, we propose that this gain-of-function approach can be applied to large-scale genetic screens in a vertebrate model organism and may reveal previously unknown gene function.


Insertional mutagenesis Forward genetic screen Gal4-VP16 Guanylate cyclase 



We would like to thank Emily Janega for assistance with PCR and In situ hybridization. This work is supported by NIH EY016092 to (WC), NIH Training Grant 1T32HD049309-01A1 to Jan Christian (LAM) and P40 RR012546 (ZIRC).


  1. Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724PubMedCrossRefGoogle Scholar
  2. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105:1255–1260PubMedCrossRefGoogle Scholar
  3. Baehr W, Karan S, Maeda T, Luo DG, Li S, Bronson JD, Watt CB, Yau KW, Frederick JM, Palczewski K (2007) The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 282:8837–8847PubMedCrossRefGoogle Scholar
  4. Chen W, Casey Corliss D (2004) Three modules of zebrafish Mind bomb work cooperatively to promote Delta ubiquitination and endocytosis. Dev Biol 267:361–373PubMedCrossRefGoogle Scholar
  5. Chen W, Burgess S, Hopkins N (2001) Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development 128:2385–2396PubMedGoogle Scholar
  6. Chen W, Burgess S, Golling G, Amsterdam A, Hopkins N (2002) High-throughput selection of retrovirus producer cell lines leads to markedly improved efficiency of germ line-transmissible insertions in zebra fish. J Virol 76:2192–2198PubMedCrossRefGoogle Scholar
  7. Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H, Halpern ME, Leach SD, Parsons MJ (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304:811–824PubMedCrossRefGoogle Scholar
  8. Desai BS, Monahan AJ, Carvey PM, Hendey B (2007) Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant 16:285–299PubMedGoogle Scholar
  9. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  10. Ellingsen S, Laplante MA, Konig M, Kikuta H, Furmanek T, Hoivik EA, Becker TS (2005) Large-scale enhancer detection in the zebrafish genome. Development 132:3799–3811PubMedCrossRefGoogle Scholar
  11. Goldsmith P, Harris WA (2003) The zebrafish as a tool for understanding the biology of visual disorders. Semin Cell Dev Biol 14:11–18PubMedCrossRefGoogle Scholar
  12. Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin SY, Nissen RM, Hopkins N (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31:135–140PubMedCrossRefGoogle Scholar
  13. Grabher C, Joly JS, Wittbrodt J (2004) Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. Methods Cell Biol 77:381–401PubMedCrossRefGoogle Scholar
  14. Haffter P, Nusslein-Volhard C (1996) Large scale genetics in a small vertebrate, the zebrafish. Int J Dev Biol 40:221–227PubMedGoogle Scholar
  15. Hay BA, Maile R, Rubin GM (1997) P element insertion-dependent gene activation in the Drosophila eye. Proc Natl Acad Sci USA 94:5195–5200PubMedCrossRefGoogle Scholar
  16. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144PubMedCrossRefGoogle Scholar
  17. Kay JN, Link BA, Baier H (2005) Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development 132:2573–2585PubMedCrossRefGoogle Scholar
  18. Kotani T, Nagayoshi S, Urasaki A, Kawakami K (2006) Transposon-mediated gene trapping in zebrafish. Methods 39:199–206PubMedCrossRefGoogle Scholar
  19. Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265:666–669PubMedCrossRefGoogle Scholar
  20. Molnar C, Lopez-Varea A, Hernandez R, de Celis JF (2006) A gain-of-function screen identifying genes required for vein formation in the Drosophila melanogaster wing. Genetics 174:1635–1659PubMedCrossRefGoogle Scholar
  21. Monahan AJ, Warren M, Carvey PM (2008) Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: an autoimmune hypothesis. Cell Transplant 17:363–372PubMedGoogle Scholar
  22. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66PubMedCrossRefGoogle Scholar
  23. Rorth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93:12418–12422PubMedCrossRefGoogle Scholar
  24. Rorth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milan M, Benes V, Ansorge W, Cohen SM (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057PubMedGoogle Scholar
  25. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4:323–326PubMedGoogle Scholar
  26. Staudt N, Molitor A, Somogyi K, Mata J, Curado S, Eulenberg K, Meise M, Siegmund T, Hader T, Hilfiker A, Bronner G, Ephrussi A, Rorth P, Cohen SM, Fellert S, Chung HR, Piepenburg O, Schafer U, Jackle H, Vorbruggen G (2005) Gain-of-function screen for genes that affect Drosophila muscle pattern formation. PLoS Genet 1:e55PubMedCrossRefGoogle Scholar
  27. Suenobu N, Shichiri M, Iwashina M, Marumo F, Hirata F (1999) Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP-dependent mechanism. Arterioscler Thromb Vasc Biol 19:140–146PubMedGoogle Scholar
  28. Wang D, Jao LE, Zheng N, Dolan K, Ivey J, Zonies S, Wu X, Wu K, Yang H, Meng Q, Zhu Z, Zhang B, Lin S, Burgess SM (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci USA 104:12428–12433PubMedCrossRefGoogle Scholar
  29. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751PubMedCrossRefGoogle Scholar
  30. Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742PubMedCrossRefGoogle Scholar
  31. Yang RB, Foster DC, Garbers DL, Fulle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606PubMedCrossRefGoogle Scholar
  32. Zabel U, Weeger M, La M, Schmidt HH (1998) Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem J 335(Pt 1):51–57PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lisette A. Maddison
    • 1
    • 4
  • Jianjun Lu
    • 1
  • Tristan Victoroff
    • 1
  • Ethan Scott
    • 2
    • 5
  • Herwig Baier
    • 2
  • Wenbiao Chen
    • 1
    • 3
  1. 1.Vollum InstituteOregon Health and Science UniversityPortlandUSA
  2. 2.Department of PhysiologyUCSFSan FranciscoUSA
  3. 3.Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleUSA
  4. 4.Znomics Inc.PortlandUSA
  5. 5.School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations