Podospora anserina: a model organism to study mechanisms of healthy ageing



The filamentous ascomycete Podospora anserina has been extensively studied as an experimental ageing model for more than 50 years. As a result, a huge body of data has been accumulated and various molecular pathways have been identified as part of a molecular network involved in the control of ageing and life span. The aim of this review is to summarize data on P. anserina ageing, including aspects like respiration, cellular copper homeostasis, mitochondrial DNA (mtDNA) stability/instability, mitochondrial dynamics, apoptosis, translation efficiency and pathways directed against oxidative stress. It becomes clear that manipulation of several of these pathways bears the potential to extend the healthy period of time, the health span, within the life time of the fungus. Here we put special attention on recent work aimed to identify and characterize this type of long-lived P. anserina mutants. The study of the molecular pathways which are modified in these mutants can be expected to provide important clues for the elucidation of the mechanistic basis of this type of ‘healthy ageing’ at the organism level.


Podospora anserina Ageing Copper homeostasis Mitochondria Mitochondrial DNA Apoptosis Mitochondrial dynamics Reactive oxygen species 



The experimental work of the authors was supported by grants of the Deutsche Forschungsgemeinschaft, Bonn, Germany (Os71/12-1-3) and the European Commission (Contract: LSHM-CT-2004-512020, Acronym: MiMage; Contract: LSHM-CT-2005-518230, Acronym: Proteomage).


  1. Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K (2007) Mitochondrial disruption in Drosophila apoptosis. Dev Cell 12:793–806PubMedCrossRefGoogle Scholar
  2. Albert B, Sellem CH (2002) Dynamics of the mitochondrial genome during Podospora anserina aging. Curr Genet 40:365–373PubMedCrossRefGoogle Scholar
  3. Averbeck NB, Jensen ON, Mann M, Schägger H, Osiewacz HD (2000) Identification and characterization of PaMTH1, a putative O-methyltransferase accumulating during senescence of Podospora anserina cultures. Curr Genet 37:200–208PubMedCrossRefGoogle Scholar
  4. Averbeck NB, Borghouts C, Hamann A, Specke V, Osiewacz HD (2001) Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina. Mol Gen Genet 264:604–612PubMedCrossRefGoogle Scholar
  5. Begel O, Boulay J, Albert B, Dufour E, Sainsard-Chanet A (1999) Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Mol Cell Biol 19:4093–4100PubMedGoogle Scholar
  6. Belcour L, Begel O, Mossé MO, Vierny C (1981) Mitochondrial DNA amplification in senescent cultures of Podospora anserina: variability between the retained, amplified sequences. Curr Genet 3:13–21CrossRefGoogle Scholar
  7. Belcour L, Begel O, Picard-Bennoun M (1991) A site-specific deletion in mitochondrial DNA of Podospora is under the control of nuclear genes. Proc Natl Acad Sci USA 88:3579–3583PubMedCrossRefGoogle Scholar
  8. Belcour L, Vierny C (1986) Variable DNA splicing sites of a mitochondrial intron: relationship to the senescence process in Podospora. EMBO J 5:609–614PubMedGoogle Scholar
  9. Borghouts C, Kimpel E, Osiewacz HD (1997) Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci USA 94:10768–10773PubMedCrossRefGoogle Scholar
  10. Borghouts C, Scheckhuber CQ, Stephan O, Osiewacz HD (2002a) Copper homeostasis and aging in the fungal model system Podospora anserina: differential expression of PaCtr3 encoding a copper transporter. Int J Biochem Cell Biol 34:1355–1371PubMedCrossRefGoogle Scholar
  11. Borghouts C, Scheckhuber CQ, Werner A, Osiewacz HD (2002b) Respiration, copper availability and SOD activity in P. anserina strains with different lifespan. Biogerontology 3:143–153PubMedCrossRefGoogle Scholar
  12. Borghouts C, Werner A, Elthon T, Osiewacz HD (2001) Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol Cell Biol 21:390–399PubMedCrossRefGoogle Scholar
  13. Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250PubMedCrossRefGoogle Scholar
  14. Büttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175:521–525PubMedCrossRefGoogle Scholar
  15. Contamine V, Lecellier G, Belcour L, Picard M (1996) Premature death in Podospora anserina: sporadic accumulation of the deleted mitochondrial genome, translational parameters and innocuity of the mating types. Genetics 144:541–555PubMedGoogle Scholar
  16. Coppin-Raynal E, Déquard-Chablat M, Picard M (1988) Genetics of ribosomes and translational accuracy in Podospora anserina. In: Tuite MF, Déquard-Chablat M, Picard M (eds) Genetics of translation: new approaches. Springer, Berlin, pp 431–442Google Scholar
  17. Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933PubMedCrossRefGoogle Scholar
  18. Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171:239–250PubMedCrossRefGoogle Scholar
  19. Delay C (1963) Observations inframicroscopiques sur le mycelium ‘senescent’ du Podospora anserina. CR Acad Sci Paris 256:4721–4724Google Scholar
  20. Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000) A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 97:4138–4143PubMedCrossRefGoogle Scholar
  21. Espagne E, Lespinet O, Malagnac F, Da SC, Jaillon O, Porcel BM, Couloux A, Aury JM, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9:R77.1–R77.22PubMedCrossRefGoogle Scholar
  22. Esser K, Tudzynski P (1980) Senescence in fungi. In: Thimann KV (ed) Senescence in plants. CRC Press, Boca Raton, pp 67–83Google Scholar
  23. Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14:1086–1094PubMedCrossRefGoogle Scholar
  24. Fang J, Beattie DS (2003) Alternative oxidase present in procyclic Trypanosoma brucei may act to lower the mitochondrial production of superoxide. Arch Biochem Biophys 414:294–302PubMedCrossRefGoogle Scholar
  25. Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basanez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797PubMedCrossRefGoogle Scholar
  26. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525PubMedCrossRefGoogle Scholar
  27. Gallant J, Kurland C, Parker J, Holliday R, Rosenberger R (1997) The error catastrophe theory of aging. Point counterpoint. Exp Gerontol 32:333–346PubMedCrossRefGoogle Scholar
  28. Goyal G, Fell B, Sarin A, Youle RJ, Sriram V (2007) Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell 12:807–816PubMedCrossRefGoogle Scholar
  29. Gredilla R, Grief J, Osiewacz HD (2006) Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp Gerontol 41:439–447PubMedCrossRefGoogle Scholar
  30. Groebe K, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C, Stegmann W, Wozny W, Schwall GP, Poznanovic S, Dencher NA, Jansen-Dürr P, Osiewacz HD, Schrattenholz A (2007) Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 42:887–898PubMedCrossRefGoogle Scholar
  31. Hamann A, Brust D, Osiewacz HD (2007) Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol Microbiol 65:948–958PubMedCrossRefGoogle Scholar
  32. Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–283PubMedCrossRefGoogle Scholar
  33. Hermanns J, Osiewacz HD (1992) The linear mitochondrial plasmid pAL2-1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet 22:491–500PubMedCrossRefGoogle Scholar
  34. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780PubMedCrossRefGoogle Scholar
  35. Jagasia R, Grote P, Westermann B, Conradt B (2005) DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433:754–760PubMedCrossRefGoogle Scholar
  36. Jamet-Vierny C, Boulay J, Begel O, Silar P (1997a) Contribution of various classes of defective mitochondrial DNA molecules to senescence in Podospora anserina. Curr Genet 31:171–178PubMedCrossRefGoogle Scholar
  37. Jamet-Vierny C, Boulay J, Briand JF (1997b) Intramolecular cross-overs generate deleted mitochondrial DNA molecules in Podospora anserina. Curr Genet 31:162–170PubMedCrossRefGoogle Scholar
  38. Jamet-Vierny C, Contamine V, Boulay J, Zickler D, Picard M (1997c) Mutations in genes encoding the mitochondrial outer membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol 17:6359–6366PubMedGoogle Scholar
  39. Johnson TE, McCaffrey G (1985) Programmed aging or error catastrophe? An examination by two-dimensional polyacrylamide gel electrophoresis. Mech Ageing Dev 30:285–297PubMedCrossRefGoogle Scholar
  40. Jungbluth G (2000) Oxidation of flavonols with Cu(II), Fe(II) and Fe(III) in aqueous media. J Chem Soc Perkin Trans 2:1946–1952Google Scholar
  41. Khan MA, Chock PB, Stadtman ER (2005) Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:17326–17331PubMedCrossRefGoogle Scholar
  42. Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004) Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 279:26453–26461PubMedCrossRefGoogle Scholar
  43. Kück U, Stahl U, Esser K (1981) Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina. Curr Genet 3:151–156CrossRefGoogle Scholar
  44. Kück U, Kappelhoff B, Esser K (1985a) Despite mtDNA polymorphism the mobile intron (plDNA) of the COI gene is present in ten different races of Podospora anserina. Curr Genet 10:59–67CrossRefGoogle Scholar
  45. Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985b) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9:373–382PubMedCrossRefGoogle Scholar
  46. Kunstmann B, Osiewacz HD (2008) Over-expression of a SAM dependent methyltransferase leads to an extended life span of Podospora anserina without impairments in vital functions. Aging Cell. doi:10.1111/j.1474-9726.2008.00412.x
  47. Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173PubMedCrossRefGoogle Scholar
  48. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011PubMedCrossRefGoogle Scholar
  49. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645PubMedCrossRefGoogle Scholar
  50. Lorin S, Dufour E, Boulay J, Begel O, Marsy S, Sainsard-Chanet A (2001) Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Mol Microbiol 42:1259–1267PubMedCrossRefGoogle Scholar
  51. Lorin S, Dufour E, Sainsard-Chanet A (2006) Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim Biophys Acta 1757:604–610PubMedCrossRefGoogle Scholar
  52. Lu BCK (2006) Programmed cell death in fungi. In: Kües U, Fischer R (eds) The Mycota: growth, differentiation and sexuality. Springer, Berlin, pp 167–187CrossRefGoogle Scholar
  53. Maas MF, Sellem CH, Hoekstra RF, Debets AJ, Sainsard-Chanet A (2007) Integration of a pAL2-1 homologous mitochondrial plasmid associated with life span extension in Podospora anserina. Fungal Genet Biol 44:659–671PubMedCrossRefGoogle Scholar
  54. Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276PubMedCrossRefGoogle Scholar
  55. Miller JW, Selhub J, Joseph JA (1996) Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med 21:241–249PubMedCrossRefGoogle Scholar
  56. Moore AL, Umbach AL, Siedow JN (1995) Structure-function relationships of the alternative oxidase of plant mitochondria: a model of the active site. J Bioenerg Biomembr 27:367–377PubMedCrossRefGoogle Scholar
  57. Nappi AJ, Vass E (1998) Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols. Biochim Biophys Acta 1425:159–167PubMedGoogle Scholar
  58. Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536PubMedCrossRefGoogle Scholar
  59. Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517–521PubMedCrossRefGoogle Scholar
  60. Orgel LE (1970) The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proc Natl Acad Sci USA 67:1476PubMedCrossRefGoogle Scholar
  61. Osiewacz HD (2002a) Aging in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev 123:755–764PubMedCrossRefGoogle Scholar
  62. Osiewacz HD (2002b) Mitochondrial functions and aging. Gene 286:65–71PubMedCrossRefGoogle Scholar
  63. Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8:299–305CrossRefGoogle Scholar
  64. Osiewacz HD, Hermanns J (1992) The role of mitochondrial DNA rearrangements in aging and human diseases. Aging (Milano) 4:273–286Google Scholar
  65. Osiewacz HD, Nuber U (1996) GRISEA, a putative copper-activated transcription factor from Podospora anserina involved in differentiation and senescence. Mol Gen Genet 252:115–124PubMedCrossRefGoogle Scholar
  66. Osiewacz HD, Scheckhuber CQ (2006) Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina. Free Radic Res 40:1350–1358PubMedCrossRefGoogle Scholar
  67. Prillinger H, Esser K (1977) The phenoloxidases of the ascomycete Podospora anserina. XIII. Action and interaction of genes controlling the formation of laccase. Mol Gen Genet 156:333–345PubMedCrossRefGoogle Scholar
  68. Richie DL, Miley MD, Bhabhra R, Robson GD, Rhodes JC, Askew DS (2007) The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol Microbiol 63:591–604PubMedCrossRefGoogle Scholar
  69. Rizet G (1953) Sur l’impossibilité d’obtenir la multiplication végétative ininterrompue illimitée de l’ascomycète Podospora anserina. CR Acad Sci Paris 237:838–855Google Scholar
  70. Sainsard-Chanet A, Begel O (1990) Insertion of an LrDNA gene fragment and of filler DNA at a mitochondrial exon-intron junction in Podospora. Nucleic Acids Res 18:779–783PubMedCrossRefGoogle Scholar
  71. Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105PubMedCrossRefGoogle Scholar
  72. Scheckhuber CQ, Rödel E, Wüstehube J (2008) Regulation of mitochondrial dynamics—characterization of fusion and fission genes in the ascomycete Podospora anserina. Biotechnol J 3:781–790PubMedCrossRefGoogle Scholar
  73. Schulte E, Kück U, Esser K (1988) Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211:342–349CrossRefGoogle Scholar
  74. Sellem CH, Marsy S, Boivin A, Lemaire C, Sainsard-Chanet A (2007) A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genet Biol 44:648–658PubMedCrossRefGoogle Scholar
  75. Silar P, Koll F, Rossignol M (1997) Cytosolic ribosomal mutations that abolish accumulation of circular intron in the mitochondria without preventing senescence of Podospora anserina. Genetics 145:697–705PubMedGoogle Scholar
  76. Silar P, Lalucque H, Vierny C (2001) Cell degeneration in the model system Podospora anserina. Biogerontology 2:1–17PubMedCrossRefGoogle Scholar
  77. Silar P, Picard M (1994) Increased longevity of EF-1 alpha high-fidelity mutants in Podospora anserina. J Mol Biol 235:231–236PubMedCrossRefGoogle Scholar
  78. Sotomatsu A, Nakano M, Hirai S (1990) Phospholipid peroxidation induced by the catechol-Fe3+(Cu2+) complex: a possible mechanism of nigrostriatal cell damage. Arch Biochem Biophys 283:334–341PubMedCrossRefGoogle Scholar
  79. Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343PubMedCrossRefGoogle Scholar
  80. Stumpferl SW, Stephan O, Osiewacz HD (2004) Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryotic Cell 3:200–211PubMedCrossRefGoogle Scholar
  81. Sugioka R, Shimizu S, Tsujimoto Y (2004) Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 279:52726–52734PubMedCrossRefGoogle Scholar
  82. Wallace DC (1993) Mitochondrial diseases: genotype versus phenotype. Trends Genet 9:128–133PubMedCrossRefGoogle Scholar
  83. Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283:13501–13505PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Cluster of Excellence Macromolecular Complexes and Faculty for Biosciences, Molecular Developmental BiologyJohann Wolfgang Goethe UniversityFrankfurt/MainGermany

Personalised recommendations