Strain-specific retrotransposon-mediated recombination in commercially used Aspergillus niger strain

  • Ilka Braumann
  • Marco A. van den Berg
  • Frank Kempken
Original Paper

Abstract

Transposons are usually present in multiple copies in their hosts’ genomes. Recombination between two transposon copies can result in chromosomal rearrangements. Here, we describe a recombination event between two copies of the retrotransposon ANiTa1 within the genome of the fungus Aspergillus niger (strain CBS513.88). The observed chromosomal rearrangement appears to be strain-specific, as the corresponding genomic region in another strain, ATCC1015, shows a different organization. Strain ATCC1015 actually seems to lack full-length ANiTa1 copies and possesses only solo LTR sequences. Presumably strain ATCC1015 was once colonized by ANiTa1, but then the genome subsequently lost the ANiTa1 copies. The striking genomic differences in ANiTa1 copy distribution leading to differences in the chromosomal structure between the two strains, ATTC1015 and CBS513.88, suggest that the activity of transposons may profoundly affect the evolution of different fungal strains.

Keywords

Aspergillus niger ATCC1015 CBS513.88 Retrotransposon ANiTa1 LTR Recombination 

Notes

Acknowledgments

This work was funded in part by DSM Anti-Infectives, Delft. We thank the US Department of Energy, Joint Genome Institute for access to the A. niger ATCC1015 sequence. English language editing of the manuscript was performed by “San Francisco Editing”. Ilka Braumann received a grant of the Max-Buchner-Stiftung.

References

  1. Anaya N, Roncero MIG (1996) Stress-induced rearrangement of Fusarium retrotransposon sequences. Mol Gen Genet 253:89–94PubMedCrossRefGoogle Scholar
  2. Asano Y, Nakazawa A, Kato Y, Kondo K (1989) Properties of a novel D-stereospecific aminopeptidase from Ochrobactrum anthropi. J Biol Chem 264:14233–14239PubMedGoogle Scholar
  3. Baker SE (2006) Aspergillus niger genomics: past, present and into the future. Med Mycol 44(Suppl 1):S17–S21PubMedCrossRefGoogle Scholar
  4. Braumann I, van den Berg M, Kempken F (2007) Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum. Fungal Genet Biol 44:1399–1414PubMedCrossRefGoogle Scholar
  5. Braumann I, van den Berg M, Kempken F (2008) Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr Genet 53:287–297PubMedCrossRefGoogle Scholar
  6. Davière JM, Langin T, Daboussi MJ (2001) Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. Fungal Genet Biol 34:177–192PubMedCrossRefGoogle Scholar
  7. de Lima Fávaro LC, de Araújo WL, de Azevedo JL, Pacolla-Meirelles LD (2005) The biology and potential for genetic research of transposable elements in filamentous fungi. Genet Mol Biol 28:804–813CrossRefGoogle Scholar
  8. Del Sorbo G, Andrade AC, Van Nistelrooy JGM, Van Kan JAL, Balzi E, De Waard MA (1997) Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol Gen Genet 254:417–426PubMedCrossRefGoogle Scholar
  9. Fierro F, Martín JF (1999) Molecular mechanisms of chromosomal rearrangement in fungi. Crit Rev Microbiol 25:1–17PubMedCrossRefGoogle Scholar
  10. Fierro F, Gutiérrez S, Díez B, Martín JF (1993) Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Mol Gen Genet 241:573–578PubMedCrossRefGoogle Scholar
  11. Flipphi MJ, Visser J, van der Veen P, de Graaff LH (1994) Arabinase gene expression in Aspergillus niger: indications for coordinated regulation. Microbiology 140:2673–2682PubMedCrossRefGoogle Scholar
  12. Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175:215–221PubMedCrossRefGoogle Scholar
  13. Hua-Van A, Davière JM, Kaper F, Langin T, Daboussi MJ (2000) Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet 37:339–347PubMedCrossRefGoogle Scholar
  14. Itoh N, Kawanami T, Liu JQ, Dairi T, Miyakoshi M, Nitta C, Kimoto Y (2001) Cloning and biochemical characterization of Co(2+)-activated bromoperoxidase-esterase (perhydrolase) from Pseudomonas putida IF-3 strain. Biochim Biophys Acta 1545:53–66PubMedGoogle Scholar
  15. Kaneko I, Tanaka A, Tsuge T (2000) REAL, an LTR retrotransposon from the plant pathogenic fungus Alternaria alternata. Mol Gen Genet 263:625–634PubMedCrossRefGoogle Scholar
  16. Kempken F (2003) Fungal transposable elements: inducers of mutations and molecular tools. In: Arora DK, Khachatourians GG (eds) Applied Mycology and Biotechnology vol 3. Fungal genomics. Elsevier Science Annual Review Series, pp 83–99Google Scholar
  17. Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9PubMedCrossRefGoogle Scholar
  18. Kempken F, Jacobsen S, Kück U (1998) Distribution of the fungal transposon Restless: full-length and truncated copies in closely related strains. Fungal Genet Biol 25:110–118PubMedCrossRefGoogle Scholar
  19. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478PubMedGoogle Scholar
  20. Larrondo LF, Canessa P, Vicuna R, Stewart P, Vanden Wymelenberg A, Cullen D (2007) Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes. Mol Genet Genomics 277:43–55PubMedCrossRefGoogle Scholar
  21. Marín S, Sanchis V, Arnau F, Ramos AJ, Magan N (1998) Colonisation and competitiveness of Aspergillus and Penicillium species on maize grain in the presence of Fusarium moniliforme and Fusarium proliferatum. Int J Food Microbiol 45:107–117PubMedCrossRefGoogle Scholar
  22. Mieczkowski PA, Lemoine FJ, Petes TD (2006) Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 5:1010–1020CrossRefGoogle Scholar
  23. Moore SP, Liti G, Stefanisko KM, Nyswaner KM, Chang C, Louis EJ, Garfinkel DJ (2004) Analysis of a Ty1-less variant of Saccharomyces paradoxus: the gain and loss of Ty1 elements. Yeast 21:649–660PubMedCrossRefGoogle Scholar
  24. Nitta N, Farman ML, Leong SA (1997) Genome organization of Magnaporthe grisea: integration fo genetic maps, clustering of transposable elements and identification of genome duplications and rearrangements. Theor Appl Genet 95:20–32CrossRefGoogle Scholar
  25. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck PWM, van Dijk A, Dijkhuizen L, Driessen AJM, d‘Enfert C, Geysens S, Goosen C, Groot GSP, de Groot PWJ, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JPTW, van den Hondel CAMJJ, van der Heijden RTJM, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CMJ, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJJ, Wedler H, Wosten HAB, Zeng A-P, van Ooyen AJJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotech 25:221–231CrossRefGoogle Scholar
  26. Pöggeler S, Kempken F (2004) Mobile genetic elements in mycelial fungi. In: Kück U (ed) The Mycota II, genetics and biotechnology, 2nd edn. Springer, HeidelbergGoogle Scholar
  27. Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51:741–752PubMedCrossRefGoogle Scholar
  28. Sharma N, Tripathi A (2006) Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol Res doi:10.1016/j.micres.2006.06.009
  29. Wöstemeyer J, Kreibich A (2002) Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet 41:189–198PubMedCrossRefGoogle Scholar
  30. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530PubMedCrossRefGoogle Scholar
  31. Yagawa Y, Kawakami K, Nagano K (1990) Cloning and analysis of the 5′-flanking region of rat Na+/K(+)-ATPase alpha 1 subunit gene. Biochim Biophys Acta 1049:286–292PubMedGoogle Scholar
  32. Young CA, Felliti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saika S, Scott B (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Netyphodium lolii. Fungal Genet Biol 43:679–693PubMedCrossRefGoogle Scholar
  33. Zhong S, Steffenson BJ (2007) Molecular karyotyping and chromosome length polymorphism in Cochliobolus sativus. Mycol Res 111:78–86PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ilka Braumann
    • 1
  • Marco A. van den Berg
    • 2
  • Frank Kempken
    • 1
  1. 1.Abteilung Botanik mit Schwerpunkt Genetik und Molekularbiologie, Botanisches Institut und Botanischer GartenChristian-Albrechts-Universität zu KielKielGermany
  2. 2.DSM Anti-Infectives (624-0270)DelftThe Netherlands

Personalised recommendations