Molecular Genetics and Genomics

, Volume 280, Issue 1, pp 59–72 | Cite as

Global consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum

  • Stephanie Hacker
  • Julia Gödeke
  • Andrea Lindemann
  • Socorro Mesa
  • Gabriella Pessi
  • Franz Narberhaus
Original Paper


Phosphatidylcholine (PC) is the major phospholipid in eukaryotic membranes. In contrast, it is found in only a limited number of bacteria including members of the Rhizobiales. Here, PC is required for pathogenic and symbiotic plant-microbe interactions, as shown for Agrobacterium tumefaciens and Bradyrhizobium japonicum, respectively. Two different phospholipid N-methyltransferases, PmtA and PmtX1, convert phosphatidylethanolamine (PE) to PC by three consecutive methylation reactions in B. japonicum. PmtA mainly catalyzes the first methylation reaction converting PE to monomethyl PE, which then serves as substrate for PmtX1 performing the last two methylation reactions. Disruption of the pmtA gene results in a significantly reduced PC content causing a defect in symbiosis with the soybean host. A genome-wide survey for differentially expressed genes in the pmtA mutant with a custom-made Affymetrix gene chip revealed that PC reduction affects transcription of a strictly confined set of genes. Among the 11 up regulated genes were pmtX3 and pmtX4, which code for isoenzymes of PmtA. The expression of two typical two-component systems, a MarR-like regulator and two proteins of a RND-type (resistance nodulation cell division) efflux system were differentially expressed in the pmtA mutant. Our data suggests that a decrease in the PC content of B. japonicum membranes induces a rather specific transcriptional response involving three different transcriptional regulators all involved in the regulatory fine-tuning of a RND-type transport system.


Phospholipids Phosphatidylcholine Phosphatidylethanolamine Methyltransferase Rhizobium Nitrogen fixation 



We are grateful to Hauke Hennecke and Hans-Martin Fischer for making the Affymetrix GeneChips available. We also appreciate their advice on the present manuscript. We thank Christiane Fritz for excellent technical assistance and Bernd Masepohl for helpful comments on this manuscript. The work was supported by the German Research Foundation (DFG, SFB 480).


  1. Aires JR, Köhler T, Nikaido H, Plésiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43:2624–2628PubMedGoogle Scholar
  2. Alexeyev MF (1995) Three kanamycin resistance gene cassettes with different polylinkers. BioTechniques 18:52–56PubMedGoogle Scholar
  3. Arondel V, Benning C, Somerville CR (1993) Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC from Rhodobacter sphaeroides. J Biol Chem 268:16002–16008PubMedGoogle Scholar
  4. Aygun-Sunar S, Mandaci S, Koch HG, Murray IVJ, Goldfine H, Daldal F (2006) Ornithine lipid is required for optimal steady-state amounts o c-type cytochromes in Rhodobacter capsulatus. Mol Microbiol 61:418–435PubMedCrossRefGoogle Scholar
  5. Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19:827–839PubMedCrossRefGoogle Scholar
  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917Google Scholar
  7. Bogdanov M, Sun J, Kaback HR, Dowhan W (1996) A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem 271:11615–11618PubMedCrossRefGoogle Scholar
  8. Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM, Woodward MJ, Piddock LJ (2006) The AcrAB-TolC efflux system of Salmonella enterica serovar typhimurium plays a role in pathogenesis. Cell Microbiol 8:847–856PubMedCrossRefGoogle Scholar
  9. Burse A, Weingart H, Ullrich MS (2004) The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant Microbe Interact 17:43–54PubMedCrossRefGoogle Scholar
  10. Castle LA, Smith KD, Morris RO (1992) Cloning and sequencing of an Agrobacterium tumefaciens beta-glucosidase gene involved in modifying a vir-inducing plant signal molecule. J Bacteriol 174:1478–1486PubMedGoogle Scholar
  11. Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G (2007) An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Mol Plant Microbe Interact 20:1298–1307PubMedCrossRefGoogle Scholar
  12. Cheng Q, Li H, Merdek K, Park JT (2000) Molecular characterization of the beta-N-acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. J Bacteriol 182:4836–4840PubMedCrossRefGoogle Scholar
  13. Cole MA, Elkan GH (1973) Transmissible resistance to penicillin G, neomycin, and chloramphenicol in Rhizobium japonicum. Antimicrob Agents Chemother 4:248–253PubMedGoogle Scholar
  14. Comerci DJ, Altabe S, de Mendoza D, Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 188:1929–1934PubMedCrossRefGoogle Scholar
  15. Conde-Alvarez R, Grilló MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Moriyón I, Iriarte M (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8:1322–1335PubMedCrossRefGoogle Scholar
  16. Conover GM, Martínez-Morales F, Heidtman MI, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR (2008) Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 10:514–528PubMedGoogle Scholar
  17. Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ (2007) Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 189:6751–6762PubMedCrossRefGoogle Scholar
  18. de Rudder KEE, Thomas-Oates JE, Geiger O (1997) Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. J Bacteriol 179:6921–6928PubMedGoogle Scholar
  19. de Rudder KEE, López-Lara IM, Geiger O (2000) Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 37:763–772PubMedCrossRefGoogle Scholar
  20. Dunlap J, Minami E, Bhagwat AA, Keister DL, Stacey G (1996) Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic β-glucan synthesis. Mol Plant Microbe Interact 9:546–555PubMedGoogle Scholar
  21. Fischer HM, Babst M, Kaspar T, Acuña G, Arigoni F, Hennecke H (1993) One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912PubMedGoogle Scholar
  22. Göttfert M, Hitz S, Hennecke H (1990) Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes. Mol Plant Microbe Interact 3:308–316PubMedGoogle Scholar
  23. Hacker S, Sohlenkamp C, Aktas M, Geiger O, Narberhaus F (2008) Multiple phospholipid N-methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum. J Bacteriol 190:571–580PubMedCrossRefGoogle Scholar
  24. Hager AJ, Bolton DL, Pelletier MR, Brittnacher MJ, Gallagher LA, Kaul R, Skerrett SJ, Miller SI, Guina T (2006) Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol 62:227–237PubMedCrossRefGoogle Scholar
  25. Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M, Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124:795–804PubMedCrossRefGoogle Scholar
  26. Hahn M, Hennecke H (1984) Localized mutagenesis in Rhizobium japonicum. Mol Gen Genet 193:46–52CrossRefGoogle Scholar
  27. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedCrossRefGoogle Scholar
  28. Hauser F, Pessi G, Friberg M, Weber C, Rusca N, Lindemann A, Fischer HM, Hennecke H (2007) Dissection of the Bradyrhizobium japonicum NifA+sigma54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation. Mol Genet Genomics 278:255–271PubMedCrossRefGoogle Scholar
  29. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock RE, Speert DP (2002) Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196:109–118PubMedCrossRefGoogle Scholar
  30. Inoue K, Matsuzaki H, Matsumoto K, Shibuya I (1997) Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. J Bacteriol 179:2872–2878PubMedGoogle Scholar
  31. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197PubMedCrossRefGoogle Scholar
  32. Kaneshiro T, Law JH (1964) Phosphatidylcholine synthesis in Agrobacterium tumefaciens. I. Purification and properties of a phosphatidylethanolamine N-methyltransferase. J Biol Chem 239:1705–1713PubMedGoogle Scholar
  33. Kang H, Gross DC (2005) Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 71:5056–5065PubMedCrossRefGoogle Scholar
  34. Kent C (1995) Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 64:315–343PubMedCrossRefGoogle Scholar
  35. Kitamura E, Nakayama Y, Matsuzaki H, Matsumoto K, Shibuya I (1994) Acidic-phospholipid deficiency represses the flagellar master operon through a novel regulatory region in Escherichia coli. Biosci Biotechnol Biochem 58:2305–2307PubMedCrossRefGoogle Scholar
  36. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919PubMedCrossRefGoogle Scholar
  37. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  38. Krummenacher P, Narberhaus F (2000) Two genes encoding a putative multidrug efflux pump of the RND/MFP family are cotranscribed with an rpoH gene in Bradyrhizobium japonicum. Gene 241:247–254PubMedCrossRefGoogle Scholar
  39. Linares JF, López JA, Camafeita E, Albar JP, Rojo F, Martínez JL (2005) Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J Bacteriol 187:1384–1391PubMedCrossRefGoogle Scholar
  40. Lindemann A, Moser A, Pessi G, Hauser F, Friberg M, Hennecke H, Fischer HM (2007) New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR. J Bacteriol 189:8928–8943PubMedCrossRefGoogle Scholar
  41. Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci USA 99:14446–14451PubMedCrossRefGoogle Scholar
  42. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313PubMedGoogle Scholar
  43. Mantis NJ, Winans SC (1993) The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol 175:6626–6636PubMedGoogle Scholar
  44. Martínez-Morales F, Schobert M, López-Lara IM, Geiger O (2003) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149:3461–3471PubMedCrossRefGoogle Scholar
  45. Medeot DB, Bueno MA, Dardanelli MS, de Lema MG (2007) Adaptational changes in lipids of Bradyrhizobium SEMIA 6144 nodulating peanut as a response to growth temperature and salinity. Curr Microbiol 54:31–35PubMedCrossRefGoogle Scholar
  46. Mikhaleva NI, Golovastov VV, Zolov SN, Bogdanov MV, Dowhan W, Nesmeyanova MA (2001) Depletion of phosphatidylethanolamine affects secretion of Escherichia coli alkaline phosphatase and its transcriptional expression. FEBS Lett 493:85–90PubMedCrossRefGoogle Scholar
  47. Mileykovskaya E, Dowhan W (1997) The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine. J Bacteriol 179:1029–1034PubMedGoogle Scholar
  48. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  49. Minder AC, Narberhaus F, Fischer HM, Hennecke H (1998) The Bradyrhizobium japonicum phoB gene is required for phosphate-limited growth but not for symbiotic nitrogen fixation. FEMS Microbiol Lett 161:47–52PubMedCrossRefGoogle Scholar
  50. Minder AC, Fischer HM, Hennecke H, Narberhaus F (2000) Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum. J Bacteriol 182:14–22PubMedGoogle Scholar
  51. Minder AC, de Rudder KEE, Narberhaus F, Fischer HM, Hennecke H, Geiger O (2001) Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 39:1186–1198PubMedCrossRefGoogle Scholar
  52. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417PubMedCrossRefGoogle Scholar
  53. Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar typhimurium. Mol Microbiol 59:126–141PubMedCrossRefGoogle Scholar
  54. Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113PubMedGoogle Scholar
  55. Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H (2007) Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol Plant Microbe Interact 20:1353–1363PubMedCrossRefGoogle Scholar
  56. Pfeffer PE, Bécard G, Rolin DB, Uknalis J, Cooke P, Tu S (1994) In vivo nuclear magnetic resonance study of the osmoregulation of phosphocholine-substituted β-1,3;1,6 cyclic glucan and its associated carbon metabolism in Bradyrhizobium japonicum USDA 110. Appl Environ Microbiol 60:2137–2146PubMedGoogle Scholar
  57. Piddock LJ (2006) Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol 4:629–636PubMedCrossRefGoogle Scholar
  58. Raetz CRH, Dowhan W (1990) Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem 265:1235–1238PubMedGoogle Scholar
  59. Regensburger B, Hennecke H (1983) RNA polymerase from Rhizobium japonicum. Arch Microbiol 135:103–109PubMedCrossRefGoogle Scholar
  60. Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted β-(1,3); (1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116:215–225PubMedGoogle Scholar
  61. Rudolph G, Hennecke H, Fischer HM (2006a) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648PubMedCrossRefGoogle Scholar
  62. Rudolph G, Semini G, Hauser F, Lindemann A, Friberg M, Hennecke H, Fischer HM (2006b) The Iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J Bacteriol 188:733–744PubMedCrossRefGoogle Scholar
  63. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  64. Sánchez P, Linares JF, Ruiz-Díez B, Campanario E, Navas A, Baquero F, Martínez JL (2002) Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 50:657–664PubMedCrossRefGoogle Scholar
  65. Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97:10655–10660PubMedCrossRefGoogle Scholar
  66. Schujman GE, de Mendoza D (2005) Transcriptional control of membrane lipid synthesis in bacteria. Curr Opin Microbiol 8:149–153PubMedCrossRefGoogle Scholar
  67. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864PubMedCrossRefGoogle Scholar
  68. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering—transposon mutagenesis in gram-negative bacteria. BioTechnol 1:784–791CrossRefGoogle Scholar
  69. Sohlenkamp C, de Rudder KEE, Röhrs V, López-Lara IM, Geiger O (2000) Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem 275:18919–18925PubMedCrossRefGoogle Scholar
  70. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162PubMedCrossRefGoogle Scholar
  71. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  72. Tahara Y, Yamashita T, Sogabe A, Ogawa Y (1994) Isolation and characterization of Zymomonas mobilis mutant defective in phosphatidylethanolamine N-methyltransferase. J Gen Appl Microbiol 40:389–396CrossRefGoogle Scholar
  73. Tang Y, Hollingsworth RI (1998) Regulation of lipid synthesis in Bradyrhizobium japonicum: low oxygen concentrations trigger phosphatidylinositol biosynthesis. Appl Environ Microbiol 64:1963–1966PubMedGoogle Scholar
  74. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268PubMedCrossRefGoogle Scholar
  75. Vötsch W, Templin MF (2000) Characterization of a beta-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and beta-lactamase induction. J Biol Chem 275:39032–39038PubMedCrossRefGoogle Scholar
  76. Wang H-W, Chen Y, Yang H, Chen X, Duan M-X, Tai PC, Sui S-F (2003) Ring-like pore structures of SecA: Implication for bacterial protein-conducting channels. Proc Natl Acad Sci USA 100:4221–4226PubMedCrossRefGoogle Scholar
  77. Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51:47–54PubMedCrossRefGoogle Scholar
  78. Weissbach H, Brot N (1991) Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5:1593–1597PubMedCrossRefGoogle Scholar
  79. Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S, Narberhaus F (2006) Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 62:906–915PubMedCrossRefGoogle Scholar
  80. Wilderman PJ, Vasil AI, Martin WE, Murphy RC, Vasil ML (2002) Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol 184:4792–4799PubMedCrossRefGoogle Scholar
  81. Wilkinson SP, Grove A (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8:51–62PubMedGoogle Scholar
  82. Yang J, Sangwan I, Lindemann A, Hauser F, Hennecke H, Fischer HM, O’Brian MR (2006a) Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism. Mol Microbiol 60:427–437PubMedCrossRefGoogle Scholar
  83. Yang S, Lopez CR, Zechiedrich EL (2006b) Quorum sensing and multidrug transporters in Escherichia coli. Proc Natl Acad Sci USA 103:2386–2391PubMedCrossRefGoogle Scholar
  84. Zgurskaya HI, Nikaido H (1999) Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci USA 96:7190–7195PubMedCrossRefGoogle Scholar
  85. Zgurskaya HI, Nikaido H (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225PubMedCrossRefGoogle Scholar
  86. Zhang W, Campbell HA, King SC, Dowhan W (2005) Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli. J Biol Chem 280:26032–26038PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Stephanie Hacker
    • 1
  • Julia Gödeke
    • 1
  • Andrea Lindemann
    • 2
  • Socorro Mesa
    • 2
  • Gabriella Pessi
    • 2
  • Franz Narberhaus
    • 1
  1. 1.Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität BochumBochumGermany
  2. 2.Institute of Microbiology, Eidgenössische Technische Hochschule (ETH)ZürichSwitzerland

Personalised recommendations