Advertisement

Molecular Genetics and Genomics

, Volume 280, Issue 1, pp 19–24 | Cite as

Characterization of chromosome ends on the basis of the structure of TrsA subtelomeric repeats in rice (Oryza sativa L.)

  • Hiroshi Mizuno
  • Jianzhong Wu
  • Yuichi Katayose
  • Hiroyuki Kanamori
  • Takuji Sasaki
  • Takashi Matsumoto
Original Paper

Abstract

Subtelomeres contain species-specific repetitive sequences. We characterized rice chromosome ends on the basis of the structure of TrsA, a subtelomeric repetitive sequence of rice. Among the 24 chromosome arms, TrsA was arrayed in tandem on the ends of five: 5L, 6S, 8L, 9L, and 12L. TrsA sequences were arranged in discrete clusters of 3–106 copies in a chromosome-specific manner, instead of being distributed uniformly throughout the subtelomeric regions. The clusters were located at the distal-most end of the sequenced region in 5L, 6S, 8L, and 9L, but in 12L expressed genes were present distal to the clusters. Thus, rice subtelomeres are composed of discrete clusters of a TrsA-rich region and a gene-rich region with high transcriptional activity. Intra-chromosomal duplications have resulted in a striking degree of variation in the number and distribution of TrsAs, suggesting that the areas near the ends of the chromosomes are dynamic and variable.

Keywords

Rice genome Telomere Subtelomeric repeats 

Notes

Acknowledgments

We thank Dr. Rod A. Wing of the Arizona Genomics Institute for providing the Nipponbare fosmid library; F. Aota and K. Ohtsu for technical assistance; and Dr. B. A. Antonio of the National Institute of Agrobiological Sciences for critical reading of the manuscript. This study was supported by grant no. GD-2007 from the Ministry of Agriculture, Forestry and Fisheries of Japan.

References

  1. Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292:2075–2077PubMedCrossRefGoogle Scholar
  2. Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162PubMedCrossRefGoogle Scholar
  3. Fajkus J, Kralovics R, Kovarik A, Fajkusova L (1995) The telomeric sequence is directly attached to the HRS60 subtelomeric tandem repeat in tobacco chromosomes. FEBS Lett 364:33–35PubMedCrossRefGoogle Scholar
  4. Ganal MW, Lapitan NL, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3:87–94PubMedCrossRefGoogle Scholar
  5. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84PubMedCrossRefGoogle Scholar
  6. Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762PubMedCrossRefGoogle Scholar
  7. Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. The EMBO Journal 23:2304–2313PubMedCrossRefGoogle Scholar
  8. International Rice Genome Sequencing Project (IRGSP) (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  9. Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R et al (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183PubMedCrossRefGoogle Scholar
  10. Kilian A, Kleinhofs A (1992) Cloning and mapping of telomere-associated sequences from Hordeum vulgare L. Mol Gen Genet 235:153–156PubMedCrossRefGoogle Scholar
  11. Mao L, Devos KM, Zhu L, Gale MD (1997) Cloning and genetic mapping of wheat telomere-associated sequences. Mol Gen Genet 254:584–591PubMedCrossRefGoogle Scholar
  12. Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3:91–102PubMedCrossRefGoogle Scholar
  13. Mizuno H, Wu J, Kanamori H, Fujisawa M, Namiki N, Saji S, Katagiri S, Katayose Y, Sasaki T, Matsumoto T (2006) Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. Plant J 46:206–217PubMedCrossRefGoogle Scholar
  14. Mizuno H, Wu J, Katayose Y, Kanamori H, Sasaki T, Matsumoto T (2008) Chromosome-specific distribution of nucleotide substitutions in telomeric repeats of rice (Oryza sativa L.). Mol Biol Evol 25:62–68PubMedCrossRefGoogle Scholar
  15. Ohmido N, Fukui K (1997) Visual verification of close disposition between a rice genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol Biol 35:963–968PubMedCrossRefGoogle Scholar
  16. Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263:388–394PubMedCrossRefGoogle Scholar
  17. Ohmido N, Kijima K, Ashikawa I, de Jong JH, Fukui K (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 with multicolor FISH to chromosomes and extended DNA fibers. Plant Mol Biol 47:413–421PubMedCrossRefGoogle Scholar
  18. Ohtsubo H, Ohtsubo E (1994) Involvement of transposition in dispersion of tandem repeat sequences (TrsA) in rice genomes. Mol Gen Genet 245:449–455PubMedCrossRefGoogle Scholar
  19. Ohtsubo H, Umeda M, Ohtsubo E (1991) Organization of DNA sequences highly repeated in tandem in rice genomes. Jpn J Genet 66:241–254PubMedCrossRefGoogle Scholar
  20. Rice Annotation Project (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36 (Database issue):D1028–33Google Scholar
  21. Röder MS, Lapitan NL, Sorrells ME, Tanksley SD (1993) Genetic and physical mapping of barley telomeres. Mol Gen Genet 238:294–303PubMedGoogle Scholar
  22. Sasaki T, Antonio B (2005) Where does the accurate rice genome sequence lead us? Plant Mol Biol 59:27–32PubMedCrossRefGoogle Scholar
  23. Wing RA, Ammiraju JS, Luo M, Kim H, Yu Y, Kudrna D, Goicoechea JL, Wang W, Nelson W, Rao K et al (2005) The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53–62PubMedCrossRefGoogle Scholar
  24. Wu J, Mizuno H, Hayashi-Tsugane M, Ito Y, Chiden Y, Fujisawa M, Katagiri S, Saji S, Yoshiki S, Karasawa W et al (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36:720–730PubMedCrossRefGoogle Scholar
  25. Zhong XB, Fransz PF, Wennekes-Eden J, Ramanna MS, van Kammen A, Zabel P, Hans de Jong J (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hiroshi Mizuno
    • 1
  • Jianzhong Wu
    • 1
  • Yuichi Katayose
    • 1
  • Hiroyuki Kanamori
    • 2
  • Takuji Sasaki
    • 1
  • Takashi Matsumoto
    • 1
  1. 1.National Institute of Agrobiological SciencesTsukubaJapan
  2. 2.Forestry and FisheriesInstitute of the Society for Techno-innovation of AgricultureTsukubaJapan

Personalised recommendations