Molecular Genetics and Genomics

, Volume 279, Issue 4, pp 403–414 | Cite as

The barley plastome mutant CL2 affects expression of nuclear and chloroplast housekeeping genes in a cell-age dependent manner

  • Noemí Colombo
  • Carola Emanuel
  • Verónica Lainez
  • Sara Maldonado
  • Alberto R. PrinaEmail author
  • Thomas BörnerEmail author
Original Paper


The barley plastome mutant CL2 (cytoplasmic line 2) carries a point mutation in the infA gene, a homologue of the bacterial gene for the conserved translation initiator factor 1 (IF1). The function of infA in plastids is not known. The mutation in CL2 leads to a temporal chlorophyll deficiency in the primary leaf blade that is normalised in the basal and middle parts during further development. We have compared the expression of selected nuclear and plastid genes in different parts of primary leaves of CL2 and wild-type and found no indication for an adverse effect of the mutation on plastidial transcription. We observed an enhanced expression of RpoTp (encoding the phage-type nuclear-encoded plastid RNA polymerase) suggested to be caused by retrograde plastid signalling. Decreased amounts of plastid rRNA in basal and top sections are in agreement with the idea that the mutation in infA leads to a time- and position-dependent defect of plastid translation that causes a delay in plastid development. The normalisation of the phenotype in the middle section of CL2 leaves correlates with wild-type levels of chloroplast 16S rRNA and RbcL and increased expression of plastid housekeeping genes. The normalisation was not observed in cells at the tip of CL2 leaves suggesting different ways of regulating chloroplast development in cells at the tip of primary barley leaves as compared with other leaf sections.


Chloroplast transcription Chloroplast translation Plastid signal infA Hordeum vulgare 



We are thankful to Juan J. Guiamet and Maureen Hanson for their generous gifts of antibodies. This work was supported by PICT 98: Proyecto de Investigación Científica y Técnica #04841, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina) to A.R.P. and by Deutsche Forschungsgemeinschaft (SFB 429) to T.B.


  1. Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735PubMedCrossRefGoogle Scholar
  2. Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018PubMedGoogle Scholar
  3. Baumgartner BJ, Rapp JC, Mullet JE (1993) Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (Hordeum vulgare) chloroplast development (evidence of selective stabilization of psbA mRNA). Plant Physiol 101:781–791PubMedGoogle Scholar
  4. Berends T, Gamble PE, Mullet JE (1987) Characterization of the barley chloroplast transcription units containing psaA-psaB and psaD-psaC. Nucleic Acids Res 15:5217–5240PubMedCrossRefGoogle Scholar
  5. Bisanz-Seyer C, Li Y-F, Seyer P, Mache R (1989) The components of the plastid ribosome are not accumulated synchronously during the early development of spinach plants. Plant Mo1 Biol 12:201–211CrossRefGoogle Scholar
  6. Boelens R, Gualerzi CO (2002) Structure and function of bacterial initiation factors. Curr Protein Pept Sci 3:107–119PubMedCrossRefGoogle Scholar
  7. Boyer SK, Mullet JE (1988) Sequence and transcription map of barley chloroplast psbA gene. Nucleic Acids Res 16:8184PubMedCrossRefGoogle Scholar
  8. Colombo N, Ríos RD, Prina AR (2006) Plastome analysis of barley chloroplast mutator-induced mutants. J Basic Appl Genet 17:5–9Google Scholar
  9. Croitoru V, Bucheli-Witschel M, Hägg P, Abdulkarim F, Isaksson LA (2004) Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli. Eur J Biochem 271:534–544PubMedCrossRefGoogle Scholar
  10. Croitoru V, Semrad K, Prenninger S, Rajkowitsch L, Vejen M, Laursen BS, Sperling-Petersen HU, Isaksson LA (2006) RNA chaperone activity of translation initiation factor IF1. Biochimie 88:1875–1882PubMedCrossRefGoogle Scholar
  11. Dahlquist KD, Puglisi JD (2000) Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J Mol Biol 299:1–15PubMedCrossRefGoogle Scholar
  12. Dean C, Leech RM (1982) Genome expression during normal leaf development. I. Cellular and chloroplast numbers and DNA, RNA and protein levels in tissues of different ages within a seven-day-old wheat leaf. Plant Physiol 69:904–910PubMedGoogle Scholar
  13. Demarsy E, Courtois F, Azevedo J, Buhot L, Lerbs-Mache S (2006) Building up of the plastid transcriptional machinery during germination and early plant development. Plant Physiol 142:993–1003PubMedCrossRefGoogle Scholar
  14. Emanuel C, Weihe A, Graner A, Hess W, Börner T (2004) Chloroplast development affects expression of phage-type RNA polymerases in barley leaves. Plant J 38:460–472PubMedCrossRefGoogle Scholar
  15. Esau K (1977) Anatomy of seed plants. Wiley, New YorkGoogle Scholar
  16. Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048PubMedCrossRefGoogle Scholar
  17. Han CD, Coe EH Jr, Martienssen RA (1992) Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J 11:4037–4046PubMedGoogle Scholar
  18. Hegeman CE, Halter CP, Owens TG, Hanson MR (2005) Expression of complementary RNA from chloroplast transgenes affects editing efficiency of transgene and endogenous chloroplast transcripts. Nucleic Acids Res 33:1454–1464PubMedCrossRefGoogle Scholar
  19. Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12:563–571PubMedGoogle Scholar
  20. Hess WR, Börner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59PubMedCrossRefGoogle Scholar
  21. Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T (1994a) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465PubMedCrossRefGoogle Scholar
  22. Hess WR, Müller A, Nagy F, Börner T (1994b) Ribosome deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet 242:305–312PubMedCrossRefGoogle Scholar
  23. Hübschmann T, Börner T (1998) Characterisation of transcript initiation sites in ribosome-deficient barley plastids. Plant Mol Biol 36:493–496PubMedCrossRefGoogle Scholar
  24. Klein RR, Mullet JE (1986) Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J Biol Chem 261:11138–11145PubMedGoogle Scholar
  25. Klein RR, Mullet JE (1990) Light-induced transcription of chloroplast genes. psbA transcription is differentially enhanced in illuminated barley. J Biol Chem 265:1895–1902PubMedGoogle Scholar
  26. Kozak M (1983) Comparison of initiation of protein synthesis in Prokaryotes, Eukaryotes, and Organelles. Microbiol Rev 47:1–45PubMedGoogle Scholar
  27. Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K (2004) Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol 45:1194–1201PubMedCrossRefGoogle Scholar
  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  29. Landau A, Díaz Paleo A, Civitillo R, Jaureguialzo M, Prina AR (2007) Two infA gene mutations independently originated from a mutator genotype in barley. J Hered 98:272–276PubMedCrossRefGoogle Scholar
  30. Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU (2005) Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69:101–123PubMedCrossRefGoogle Scholar
  31. Leech RM, Rumsby MG, Thomson WW (1973) Plastid differentiation, acyl lipid and fatty acid changes in developing green maize leaves. Plant Physiol 52:24–45Google Scholar
  32. Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP deficient transcription machineries. Plant J 2:171–188CrossRefGoogle Scholar
  33. Legen J, Wanner G, Herrmann RG, Small I, Schmitz-Linneweber C (2007) Plastid tRNA genes trnC-GCA and trnN-GUU are essential for plant cell development. Plant J 51:751–762PubMedCrossRefGoogle Scholar
  34. Liere K, Börner T (2006) Transcription of plastid genes. In: Grasser KD (ed) Regulation of transcription in plants. Blackwell, Oxford, pp 184–223Google Scholar
  35. Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577PubMedCrossRefGoogle Scholar
  36. Meng BY, Tanaka M, Wakasugi T, Ohme M, Shinozaki K, Sugiura M (1988) Cotranscription of the genes encoding two P700 chlorophyll a apoproteins with the gene for ribosomal protein CS14: determination of the transcriptional initiation site by in vitro capping. Curr Genet 14:395–400PubMedCrossRefGoogle Scholar
  37. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658PubMedCrossRefGoogle Scholar
  38. Motohashi R, Yamazaki T, Myouga F, Ito T, Ito K, Satou M, Kobayashi M, Nagata N, Yoshida S, Nagashima A, Tanaka K, Takahashi S, Shinozaki K (2007) Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol Biol 64:481–497PubMedCrossRefGoogle Scholar
  39. Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313PubMedCrossRefGoogle Scholar
  40. Myhill RR, Konzak CF (1967) A new technique for culturing and measuring barley seedlings. Crop Sci 7:275–277CrossRefGoogle Scholar
  41. Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18:970–991PubMedCrossRefGoogle Scholar
  42. Prina AR (1992) A mutator nuclear gene inducing a wide spectrum of cytoplasmically - inherited chlorophyll deficiences in barley. Theor Appl Genet 85:245–251CrossRefGoogle Scholar
  43. Prina AR (1996) Mutator-induced cytoplasmic mutants in barley: genetic evidence of activation of a putative chloroplast transposon. J Hered 87:385–389Google Scholar
  44. Prina AR, Arias MC, Lainez V, Landau A, Maldonado S (2003) A cytoplasmically inherited mutant controlling early chloroplast development in barley seedlings. Theor Appl Genet 107:1410–1418PubMedCrossRefGoogle Scholar
  45. Prina AR, Maldonado S, Arias MC, Colombo N, RíosRD, Acevedo A, Otegui M (1996) Mutator-induced variability in barley. In: Slinkart A et al. (eds) Proceedings of the V International Oat Conference and VII International Barley Genetics Symposium. University of Saskatchewan, vol 2, pp 552–554Google Scholar
  46. Rapp JC, Baumgartner BJ, Mullet J (1992) Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267:21404–21411PubMedGoogle Scholar
  47. Rios RD, Saione H, Robredo C, Acevedo A, Colombo N, Prina AR (2003) Isolation and molecular characterization of atrazine tolerant barley mutants. Theor Appl Genet 106:696–702PubMedGoogle Scholar
  48. Robertson D, Laetsch WM (1974) Structure and function of developing barley plastids. Plant Physiol 54:148–159PubMedGoogle Scholar
  49. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545PubMedCrossRefGoogle Scholar
  50. Ruppel N, Hangarter RP (2007) Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana. BMC Plant Biol 7:37PubMedCrossRefGoogle Scholar
  51. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  52. Satoh J, Baba K, Nakahira Y, Tsunoyama Y, Shiina T, Toyoshima Y (1999) Developmental stage-specific multi-subunit plastid RNA polymerases (PEP) in wheat. Plant J 18:407–415PubMedCrossRefGoogle Scholar
  53. Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68PubMedCrossRefGoogle Scholar
  54. Smith H (1970) Changes in plastid ribosomal RNA and enzymes during the growth of barley leaves in darkness. Phytochemistry 9:965–975CrossRefGoogle Scholar
  55. Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K (2004) The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:985–996PubMedCrossRefGoogle Scholar
  56. Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168PubMedCrossRefGoogle Scholar
  57. Sullivan JA, Gray JC (1999) Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11:901–910PubMedCrossRefGoogle Scholar
  58. Topping JF, Leaver CJ (1990) Mitochondrial gene expression during wheat leaf development. Planta 182:399–407CrossRefGoogle Scholar
  59. Viro M, Kloppstech K (1980) Differential expression of the genes for ribulose-1-5-biphosphate carboxylase and light-harvesting chlorophyll a/b protein in the developing barley leaf. Planta 150:41–45CrossRefGoogle Scholar
  60. Wollgiehn R, Parthier B (1980) RNA and protein synthesis in plastid differentiation. In: Reinert J (ed) Results and problems in cell differentiation. Springer, Berlin, pp 97–145Google Scholar
  61. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar
  62. Zubko MK, Day A (2002) Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome deficient plastids in stable phenocopies of cereal albino mutants. Mol Genet Genomics 267:27–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Noemí Colombo
    • 1
    • 2
  • Carola Emanuel
    • 2
  • Verónica Lainez
    • 3
  • Sara Maldonado
    • 3
    • 4
  • Alberto R. Prina
    • 1
    Email author
  • Thomas Börner
    • 2
    Email author
  1. 1.Instituto de Genética Ewald A. Favret, CICVyA, CNIA, INTA, CC 25Buenos AiresArgentina
  2. 2.Institute of Biology/GeneticsHumboldt UniversityBerlinGermany
  3. 3.Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  4. 4.Instituto de Recursos Biológicos, CIRN, CNIA, INTA, CC 25Buenos AiresArgentina

Personalised recommendations