Advertisement

Molecular Genetics and Genomics

, Volume 279, Issue 2, pp 171–182 | Cite as

Ascorbate peroxidase gene family in tomato: its identification and characterization

  • Naim Najami
  • Tibor Janda
  • Waseim Barriah
  • Galya Kayam
  • Moshe Tal
  • Micha Guy
  • Micha VolokitaEmail author
Original Paper

Abstract

The antioxidative response, where ascorbate peroxidase (APX) is a key enzyme, is an integral part of the plant tolerance response to environmental stresses. As a first step towards the study of the physiological role and the regulation of the members of the Apx gene family, the orthologs of the stress-sensitive cultivated tomato Solanum lycopersicum cv. M82 (Slm) and of the wild salt-tolerant species S. pennellii acc. Atico (Spa) were identified by utilizing the tomato EST database, and characterized. A redundant list of 16 virtual Apx transcripts and four singleton ESTs was shown to correspond to seven genuine Apx genes. The complete tomato Apx gene family is comprised of genes encoding three cytosolic, two peroxisomal, and two chloroplastic APXs. These genes attained differential regulatory patterns in various Slm organs. More detailed study of Apx1 and Apx2 genes, that are the products of a recent gene duplication event, shows that they have already attained differential regulation within and between Slm and Spa under control and stress conditions. It is also suggested that due to lineage-specific gene duplication and lose events, intricate phylogenetic relationships exist among the members of the Apx gene families.

Keywords

Ascorbate peroxidase Gene duplication Gene expression Gene family Tomato 

Notes

Acknowledgments

We thank Prof. L. Reinhold for critical reading of the manuscript and many useful comments. The study was supported by Dr. Herman Kessel Research Fund, in the memory of Mr. C. J. J. Van Kensbury.

Supplementary material

438_2007_305_MOESM1_ESM.doc (32 kb)
Table S1 (DOC 33 kb)
438_2007_305_MOESM2_ESM.doc (22 kb)
Table S2 (DOC 22 kb)
438_2007_305_MOESM3_ESM.doc (24 kb)
Table S3 (DOC 24 kb)
438_2007_305_MOESM4_ESM.doc (28 kb)
Table S4 (DOC 29 kb)

References

  1. Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192PubMedCrossRefGoogle Scholar
  2. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678PubMedCrossRefGoogle Scholar
  3. Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase: a prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598PubMedCrossRefGoogle Scholar
  4. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877PubMedCrossRefGoogle Scholar
  5. Corpas FJ, Gomez M, Hernandez JA, Delrio LA (1993) Metabolism of activated oxygen in peroxisomes from 2 pisum-sativum l cultivars with different sensitivity to sodium-chloride. J Plant Physiol 141:160–165Google Scholar
  6. D’arcy-Lameta AS, Ferrari-Iliou R, Contour-Ansel1 D, Pham-Thi A-T, Zuily-Fodil Y (2006) Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Ann Bot 97:133–140PubMedCrossRefGoogle Scholar
  7. Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281PubMedCrossRefGoogle Scholar
  8. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9CrossRefGoogle Scholar
  9. Dong Q, Lawrence C J, Schlueter S D, Wilkerson MD, Kurtz S, Lushbough C, Brendel V (2005) Comparative plant genomics resources at PlantGDB. Plant Physiol 139:610–618PubMedCrossRefGoogle Scholar
  10. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedGoogle Scholar
  11. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedCrossRefGoogle Scholar
  12. Gossett DR, Millhollon EP, Lucas C (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714CrossRefGoogle Scholar
  13. Hillier LD, Lennon G, Becker M, Bonaldo MF, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A, Gish W, Hawkins M, Hultman M, Kucaba M, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M, Parsons J, Prange C, Rifkin L, Rohlfing T, Schellenberg K, Marra M (1996) Generation and analysis of 280,000 human expressed sequence tags. Genome Res 6:807–828PubMedCrossRefGoogle Scholar
  14. Ishikawa T, Sakai, Yoshimura K, Takeda T, Shigeoka S (1996) cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions. FEBS Lett 384:289–293PubMedCrossRefGoogle Scholar
  15. Jespersen HM, Kjaersgard IVH, Ostergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310PubMedGoogle Scholar
  16. Jongeneel CV (2000) Searching the expressed sequence tag (EST) databases: panning for genes. Brief Bioinform 1:76–92PubMedCrossRefGoogle Scholar
  17. Kieselbach T, Bystedt M, Hynds P, Robinson C, Schröder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480(2–3):271–276PubMedCrossRefGoogle Scholar
  18. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278PubMedCrossRefGoogle Scholar
  19. Macdonald IK, Badya SK, Ghamsari L, Moody PCE, Raven EL (2006) Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis. Biochemistry 45:7808–7817PubMedCrossRefGoogle Scholar
  20. Mano S, Yamaguchi K, Hayashi M, Nishimura M (1997) Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett 413:21–26PubMedCrossRefGoogle Scholar
  21. Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16:1046–1047PubMedCrossRefGoogle Scholar
  22. Meneguzzo S, Navari-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155:274–280Google Scholar
  23. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  24. Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate–glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 110:42–51CrossRefGoogle Scholar
  25. Mittova V, Tal M, Volokita M, Guy M (2002) Salt-stress induces upregulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400PubMedCrossRefGoogle Scholar
  26. Mittova V, Theodoulou FL, Kiddle G, Volokita M, Tal M, Foyer CH, Guy M (2004) Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii––a role for matrix isoforms in protection against oxidative damage. Plant Cell Environ 27:237–250CrossRefGoogle Scholar
  27. Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem 275:16337–16344PubMedCrossRefGoogle Scholar
  28. Narendra S, Venkataramani S, Shen GX, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3033–3042PubMedCrossRefGoogle Scholar
  29. Nelson RT, Grant D, Shoemaker RC (2005) ESTminer: a suite of programs for gene and allele identification. Bioinformatics 21:691–693PubMedCrossRefGoogle Scholar
  30. Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R (2004) Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J 39:877–885PubMedCrossRefGoogle Scholar
  31. Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853PubMedCrossRefGoogle Scholar
  32. Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222:926–932PubMedCrossRefGoogle Scholar
  33. Patterson WR, Poulos TL (1994) Characterization and crystallization of recombinant pea cytosolic ascorbate peroxidase. J Biol Chem 269:17020–17024PubMedGoogle Scholar
  34. Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JC, Lester RN, Skelding AD (eds) The biology of the Solanaceae. Academic, New York, pp 677–687Google Scholar
  35. Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494PubMedCrossRefGoogle Scholar
  36. Sharp KH, Mewies M, Moody PC, Raven EL (2003) Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat Struct Biol 10:303–307PubMedCrossRefGoogle Scholar
  37. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isozymes. J Exp Bot 53:1305–1319PubMedCrossRefGoogle Scholar
  38. Taha R, Mills D, Heimer Y, Tal M (2000) The relation between low K+/Na+ ratio and salt-tolerance in the wild tomato species Lycopersicon pennellii. J Plant Physiol 157:59–64Google Scholar
  39. Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro MJ (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761–770PubMedCrossRefGoogle Scholar
  40. Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314PubMedCrossRefGoogle Scholar
  41. Wada K, Tada T, Nakamura Y, Ishikawa T, Yabuta Y, Yoshimura K, Shigeoka S, Nishimura K (2003) Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability. J Biochem 134:239–244PubMedCrossRefGoogle Scholar
  42. Walker MA, McKersie BD (1993) Role of the ascorbate–glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol 141:234–239Google Scholar
  43. Yoshimura K, Ishikawa T, Nakamura Y, Tamoi M, Takeda T, Tada T, Nishimura K, Shigeoka S (1998) Comparative study on recombinant chloroplastic and cytosolic ascorbate peroxidase isozymes of spinach. Arch Biochem Biophys. 353:55–63PubMedCrossRefGoogle Scholar
  44. Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2002) Identification of a cis element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants. J Biol Chem 277:40623–40632PubMedCrossRefGoogle Scholar
  45. Zhang H, Wang J, Nickel U, Allen RD, Goodman HM (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol Biol 34:967–971PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Naim Najami
    • 1
  • Tibor Janda
    • 2
    • 4
  • Waseim Barriah
    • 1
  • Galya Kayam
    • 1
  • Moshe Tal
    • 1
  • Micha Guy
    • 2
  • Micha Volokita
    • 3
    Email author
  1. 1.Department of Life SciencesBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.The Institutes for Desert Research, The Albert Katz department for Dryland BiotechnologiesBen-Gurion University of the NegevSede BoqerIsrael
  3. 3.The National Institute for Biotechnology in the NegevBen-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations