Molecular Genetics and Genomics

, Volume 279, Issue 2, pp 123–132

Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity

  • María García-Rubio
  • Sebastián Chávez
  • Pablo Huertas
  • Cristina Tous
  • Sonia Jimeno
  • Rosa Luna
  • Andrés Aguilera
Original Paper

Abstract

THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and plays a role in preventing the transcription-associated genetic instability. THO is composed of Tho2, Hpr1, Mft1 and Thp2 subunits, which associate with the Sub2-Yra1 export factors and Tex1 to form the TREX complex. To compare the functional relevance of the different THO/TREX subunits, we determined the effect of their null mutations on mRNA accumulation and recombination. Unexpectedly, we noticed that a full deletion of HPR1, hpr1ΔK, conferred stronger hyper-recombination phenotype and gene expression defects than did hpr1ΔH, the allele encoding a C-terminal truncated protein which was used in most previous studies. We show that tho2Δ and, to a lesser extent, hpr1ΔK are the THO mutations with the highest impact on all phenotypes, and that sub2Δ shows a similar transcription-dependent hyper-recombination phenotype and in vivo transcription impairment as hpr1ΔK and tho2Δ. Recombination and transcription analyses indicate that THO/TREX mutants share a moderate but significant effect on gene conversion and ectopic recombination, as well as transcription impairment of even short and low GC-content genes. Our data provide new information on the relevance of these proteins in mRNP biogenesis and in the maintenance of genomic integrity.

Keywords

THO complex Sub2 Genetic instability mRNP biogenesis Transcription Transcription-associated recombination 

References

  1. Aguilera A (2002) The connection between transcription and genomic instability. EMBO J 21:195–201PubMedCrossRefGoogle Scholar
  2. Aguilera A (2005) Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr Opin Cell Biol 17:242–250PubMedCrossRefGoogle Scholar
  3. Aguilera A, Klein HL (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae.I.Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790PubMedGoogle Scholar
  4. Aguilera A, Klein HL (1990) HPR1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene. Mol Cell Biol 10:1439–1451PubMedGoogle Scholar
  5. Burckin T et al. (2005) Exploring functional relationships between components of the gene expression machinery. Nat Struct Mol Biol 12:175–182PubMedCrossRefGoogle Scholar
  6. Chang M, French-Cornay D, Fan HY, Klein H, Denis CL, Jaehning JA (1999) A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol Cell Biol 19:1056–1067PubMedGoogle Scholar
  7. Chávez S et al. (2000) A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J 19:5824–5834PubMedCrossRefGoogle Scholar
  8. Chávez S, García-Rubio M, Prado F, Aguilera A (2001) Hpr1 is preferentially required for transcription of either long or G + C-rich DNA sequences in Saccharomyces cerevisiae. Mol Cell Biol 21:7054–7064PubMedCrossRefGoogle Scholar
  9. Fan HY, Merker RJ, Klein HL (2001) High-copy-number expression of Sub2p, a member of the RNA helicase superfamily, suppresses hpr1-mediated genomic instability. Mol Cell Biol 21:5459–5470PubMedCrossRefGoogle Scholar
  10. Fischer T et al. (2002) The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J 21:5843–5852PubMedCrossRefGoogle Scholar
  11. Freedman JA, Jinks-Robertson S (2004) Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 3:1437–1446CrossRefGoogle Scholar
  12. Gaillard H, Wellinger RE, Aguilera A (2007) A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res 35:3893–3906PubMedCrossRefGoogle Scholar
  13. Gallardo M, Luna R, Erdjument-Bromage H, Tempst P, Aguilera A (2003) Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J Biol Chem 278:24225–24232PubMedCrossRefGoogle Scholar
  14. Gari E, Piedrafita L, Aldea M, Herrero E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13:837–848PubMedCrossRefGoogle Scholar
  15. Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721PubMedCrossRefGoogle Scholar
  16. Huertas P, García-Rubio ML, Wellinger RE, Luna R, Aguilera A (2006) An hpr1 point mutation that impairs transcription and mRNP biogenesis without increasing recombination. Mol Cell Biol 26:7451–7465PubMedCrossRefGoogle Scholar
  17. Jimeno S, Rondón AG, Luna R, Aguilera A (2002) The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J 21:3526–3535PubMedCrossRefGoogle Scholar
  18. Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S (2004) Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 23:354–364PubMedCrossRefGoogle Scholar
  19. Libri D, Dower K, Boulay J, Thomsen R, Rosbash M, Jensen TH (2002) Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol Cell Biol 22:8254–8266PubMedCrossRefGoogle Scholar
  20. Libri D, Graziani N, Saguez C, Boulay J (2001) Multiple roles for the yeast SUB2/yUAP56 gene in splicing. Genes Dev 15:36–41PubMedCrossRefGoogle Scholar
  21. Luna R, Jimeno S, Marin M, Huertas P, García-Rubio M, Aguilera A (2005) Interdependence between transcription and mRNP processing and export, and its impact on genetic stability. Mol Cell 18:711–722PubMedCrossRefGoogle Scholar
  22. Mason PB, Struhl K (2005) Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17:831–840PubMedCrossRefGoogle Scholar
  23. Morillo-Huesca M, Vanti M, Chávez S (2006) A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis. FEBS J 273:756–769PubMedCrossRefGoogle Scholar
  24. Piruat JI, Aguilera A (1998) A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J 17:4859–4872PubMedCrossRefGoogle Scholar
  25. Prado F, Piruat JI, Aguilera A (1997) Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J 16:2826–2835PubMedCrossRefGoogle Scholar
  26. Rehwinkel J et al. (2004) Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 11:558–566PubMedCrossRefGoogle Scholar
  27. Rondón AG, García-Rubio M, Gonzalez-Barrera S, Aguilera A (2003a) Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J 22:612–620PubMedCrossRefGoogle Scholar
  28. Rondón AG, Jimeno S, García-Rubio M, Aguilera A (2003b) Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 278:39037–39043PubMedCrossRefGoogle Scholar
  29. Santos-Rosa H, Aguilera A (1994) Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains. Mol Gen Genet 245:224–236PubMedCrossRefGoogle Scholar
  30. Strasser K et al. (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308PubMedCrossRefGoogle Scholar
  31. Vinciguerra P, Stutz F (2004) mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol 16:285–292PubMedCrossRefGoogle Scholar
  32. Voynov V, Verstrepen KJ, Jansen A, Runner VM, Buratowski S, Fink GR (2006) Genes with internal repeats require the THO complex for transcription. Proc Natl Acad Sci USA 103:14423–14428PubMedCrossRefGoogle Scholar
  33. Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075PubMedCrossRefGoogle Scholar
  34. Wang X, Chang Y, Li Y, Zhang X, Goodrich DW (2006) Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse. Mol Cell Biol 26:4362–4367PubMedCrossRefGoogle Scholar
  35. Wellinger RE, Prado F, Aguilera A (2006) Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 26:3327–3334PubMedCrossRefGoogle Scholar
  36. Zenklusen D, Vinciguerra P, Wyss JC, Stutz F (2002) Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol Cell Biol 22:8241–8253PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • María García-Rubio
    • 1
    • 2
  • Sebastián Chávez
    • 2
  • Pablo Huertas
    • 2
    • 3
  • Cristina Tous
    • 1
    • 2
  • Sonia Jimeno
    • 1
    • 2
  • Rosa Luna
    • 1
    • 2
  • Andrés Aguilera
    • 1
    • 2
  1. 1.Departamento de Biología Molecular, CABIMERCSIC, Universidad de SevillaSevillaSpain
  2. 2.Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
  3. 3.The Wellcome Trust and Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations