Molecular Genetics and Genomics

, Volume 278, Issue 5, pp 575–584 | Cite as

Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi

  • Christina Scali
  • Tony Nolan
  • Igor Sharakhov
  • Maria Sharakhova
  • Andrea Crisanti
  • Flaminia CatterucciaEmail author
Original Paper


Transposable elements represent important tools to perform functional studies in insects. In Drosophila melanogaster, the remobilization properties of transposable elements have been utilized for enhancer-trapping and insertional mutagenesis experiments, which have considerably helped in the functional characterization of the fruitfly genome. In Anopheles mosquitoes, the sole vectors of human malaria, as well as in other mosquito vectors of disease, the use of transposons has also been advocated to achieve the spread of anti-parasitic genes throughout field populations. Here we report on the post-integration behavior of the Minos transposon in both the germ-line and somatic tissues of Anopheles mosquitoes. Transgenic An. stephensi lines developed using the piggyBac transposon and expressing the Minos transposase were tested for their ability to remobilize an X-linked Minos element. Germ-line remobilization events were not detected, while somatic excisions and transpositions were consistently recovered. The analysis of these events showed that Minos activity in Anopheles cells is characterized by unconventional functionality of the transposon. In the two cases analyzed, re-integration of the transposon occurred onto the same X chromosome, suggesting a tendency for local hopping of Minos in the mosquito genome. This is the first report of the post-integration behavior of a transposable element in a human malaria vector.


Remobilization Insertional mutagenesis Minos Anopheles Gene function 



We thank Ann Cronin for help with the maintenance of the transgenic lines. We are grateful to Morten Andreasen, Lin Du, and Doerte Schulte for initial efforts on this work, and to Bruno Arcà and David O’Brochta for helpful suggestions. FC was supported by the Wellcome Trust and a Cenci Bolognetti Foundation/Institute Pasteur fellowship, CS was supported by the Wellcome Trust and Universities UK, with The Overseas Research Students Award Scheme (ORS award).


  1. Adelman ZN, Jasinskiene N, Onal S, Juhn J, Ashikyan A, et al (2007) nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci USA 4:4Google Scholar
  2. Arca B, Zabalou S, Loukeris TG, Savakis C (1997) Mobilization of a Minos transposon in Drosophila melanogaster chromosomes and chromatid repair by heteroduplex formation. Genetics 145(2):267–279PubMedGoogle Scholar
  3. Blandin S, Moita LF, Kocher T, Wilm M, Kafatos FC, et al (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 3(9):852–856PubMedCrossRefGoogle Scholar
  4. Brown AE, Bugeon L, Crisanti A, Catteruccia F (2003) Stable and heritable gene silencing in the malaria vector Anopheles stephensi. Nucleic Acids Res 31(15):e85PubMedCrossRefGoogle Scholar
  5. Catteruccia F, Benton JP, Crisanti A (2005) An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23(11):1414–1417 [Epub 2005 Oct 1419]PubMedCrossRefGoogle Scholar
  6. Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, et al (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405(6789):959–962PubMedCrossRefGoogle Scholar
  7. Cooley L, Kelley R, Spradling A (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239(4844):1121–1128PubMedCrossRefGoogle Scholar
  8. Curtis CF, Graves PM (1988) Methods for replacement of malaria vector populations. J Trop Med Hyg 91(2):43–48PubMedGoogle Scholar
  9. Dafa’alla TH, Condon GC, Condon KC, Phillips CE, Morrison NI, et al (2006) Transposon-free insertions for insect genetic engineering. Nat Biotechnol 24(7):820–821 [Epub 2006 Jun 2025]PubMedCrossRefGoogle Scholar
  10. Drabek D, Zagoraiou L, deWit T, Langeveld A, Roumpaki C, et al (2003) Transposition of the Drosophila hydei Minos transposon in the mouse germ line. Genomics 81(2):108–111PubMedCrossRefGoogle Scholar
  11. Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J (1990) High-frequency P element loss in Drosophila is homolog dependent. Cell 62(3):515–525PubMedCrossRefGoogle Scholar
  12. Fischer SE, Wienholds E, Plasterk RH (2001) Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci USA 98(12):6759–6764 [Epub 2001 May 6729]PubMedCrossRefGoogle Scholar
  13. Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19(23):6646PubMedCrossRefGoogle Scholar
  14. Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, et al (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10(6):597–604PubMedCrossRefGoogle Scholar
  15. Guimond N, Bideshi DK, Pinkerton AC, Atkinson PW, O’Brochta DA (2003) Patterns of Hermes transposition in Drosophila melanogaster. Mol Genet Genomics 268(6):779–790 [Epub 2003 Jan 2025]PubMedGoogle Scholar
  16. Hacker U, Nystedt S, Barmchi MP, Horn C, Wimmer EA (2003) piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc Natl Acad Sci USA 100(13):7720–7725 [Epub 2003 Jun 7711]PubMedCrossRefGoogle Scholar
  17. Handler AM, Harrell RA 2nd (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8(4):449–457PubMedCrossRefGoogle Scholar
  18. Handler AM, Zimowska GJ, Horn C (2004) Post-integration stabilization of a transposon vector by terminal sequence deletion in Drosophila melanogaster. Nat Biotechnol 22(9):1150–1154 [Epub 2004 Aug 1158]PubMedCrossRefGoogle Scholar
  19. Horn C, Offen N, Nystedt S, Hacker U, Wimmer EA (2003) piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163(2):647–661PubMedGoogle Scholar
  20. Klinakis AG, Loukeris TG, Pavlopoulos A, Savakis C (2000) Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol Biol 9(3):269–275PubMedCrossRefGoogle Scholar
  21. Lidholm DA, Lohe AR, Hartl DL (1993) The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134(3):859–868PubMedGoogle Scholar
  22. Lohe AR, Hartl DL (2002) Efficient mobilization of mariner in vivo requires multiple internal sequences. Genetics 160(2):519–526PubMedGoogle Scholar
  23. Lozovsky ER, Nurminsky D, Wimmer EA, Hartl DL (2002) Unexpected stability of mariner transgenes in Drosophila. Genetics 160(2):527–535PubMedGoogle Scholar
  24. Metaxakis A, Oehler S, Klinakis A, Savakis C (2005) Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 171(2):571–581 [Epub 2005 Jun 2021]PubMedCrossRefGoogle Scholar
  25. Newfeld SJ, Takaesu NT (1999) Local transposition of a hobo element within the decapentaplegic locus of Drosophila. Genetics 151(1):177–187PubMedGoogle Scholar
  26. Nolan T (2003) The generation of germ-line transformation technology for Anopheles mosquitoes as a tool to perform functional studies. Ph.D. Thesis, Imperial College London, LondonGoogle Scholar
  27. Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277(11):8759–8762 [Epub 2002 Jan 8722]PubMedCrossRefGoogle Scholar
  28. O’Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, et al (2003) Gene vector and transposable element behavior in mosquitoes. J Exp Biol 206(Pt 21):3823–3834PubMedCrossRefGoogle Scholar
  29. Perera OP, Harrell IR, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11(4):291–297PubMedCrossRefGoogle Scholar
  30. Peter A, Schottler P, Werner M, Beinert N, Dowe G, et al (2002) Mapping and identification of essential gene functions on the X chromosome of Drosophila. EMBO Rep 3(1):34–38 [Epub 2001 Dec 2019]PubMedCrossRefGoogle Scholar
  31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory, NYGoogle Scholar
  32. Sasakura Y, Awazu S, Chiba S, Satoh N (2003) Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci USA 100(13):7726–7730 [Epub 2003 Jun 7723]PubMedCrossRefGoogle Scholar
  33. Sharakhova MV, Xia A, McAlister SI, Sharakhov IV (2006) A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for physical mapping. J Med Entomol 43(5):861–866PubMedCrossRefGoogle Scholar
  34. Smith D, Wohlgemuth J, Calvi BR, Franklin I, Gelbart WM (1993) hobo enhancer trapping mutagenesis in Drosophila reveals an insertion specificity different from P elements. Genetics 135(4):1063–1076PubMedGoogle Scholar
  35. Smith RC, Walter MF, Hice RH, O’Brochta DA, Atkinson PW (2007) Testis-specific expression of the beta2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect Mol Biol 16(1):61–71PubMedCrossRefGoogle Scholar
  36. Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, et al (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92(24):10824–10830PubMedCrossRefGoogle Scholar
  37. Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, et al (1999) The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153(1):135–177PubMedGoogle Scholar
  38. Taillebourg E, Dura JM (1999) A novel mechanism for P element homing in Drosophila. Proc Natl Acad Sci USA 96(12):6856–6861PubMedCrossRefGoogle Scholar
  39. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36(3):283–287 [Epub 2004 Feb 2022]PubMedCrossRefGoogle Scholar
  40. Wang Z, Harshey RM (1994) Crucial role for DNA supercoiling in Mu transposition: a kinetic study. Proc Natl Acad Sci USA 91(2):699–703PubMedCrossRefGoogle Scholar
  41. Wilson C, Pearson RK, Bellen HJ, O’Kane CJ, Grossniklaus U, et al (1989) P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev 3(9):1301–1313PubMedCrossRefGoogle Scholar
  42. Wilson R, Orsetti J, Klocko AD, Aluvihare C, Peckham E, et al (2003) Post-integration behavior of a Mos1 mariner gene vector in Aedes aegypti. Insect Biochem Mol Biol 33(9):853–863PubMedCrossRefGoogle Scholar
  43. Zagoraiou L, Drabek D, Alexaki S, Guy JA, Klinakis AG, et al (2001) In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc Natl Acad Sci USA 98(20):11474–11478 [Epub 12001 Sep 11418]PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christina Scali
    • 1
  • Tony Nolan
    • 1
    • 2
  • Igor Sharakhov
    • 3
  • Maria Sharakhova
    • 3
  • Andrea Crisanti
    • 1
  • Flaminia Catteruccia
    • 1
    Email author
  1. 1.Division of Cell and Molecular BiologyImperial College LondonLondonUK
  2. 2.Department of BiologyUCLLondonUK
  3. 3.Department of EntomologyVirginia TechBlacksburgUSA

Personalised recommendations