Molecular Genetics and Genomics

, Volume 277, Issue 5, pp 507–517 | Cite as

Cloning and characterization of the ribosomal protein L3 (RPL3) gene family from Triticum aestivum

  • Doris Lucyshyn
  • Bernhard L. Busch
  • Shamsozoha Abolmaali
  • Barbara Steiner
  • Elizabeth Chandler
  • Forough Sanjarian
  • Amir Mousavi
  • Paul Nicholson
  • Hermann Buerstmayr
  • Gerhard Adam
Original Paper

Abstract

Plant pathogenic fungi of the genus Fusarium can cause severe diseases on small grain cereals and maize. The contamination of harvested grain with Fusarium mycotoxins is a threat to human and animal health. In wheat production of the toxin deoxynivalenol (DON), which inhibits eukaryotic protein biosynthesis, is a virulence factor of Fusarium, and resistance against DON is considered to be part of Fusarium resistance. Previously, single amino acid changes in RPL3 (ribosomal protein L3) conferring DON resistance have been described in yeast. The goal of this work was to characterize the RPL3 gene family from wheat and to investigate the potential role of naturally existing RPL3 alleles in DON resistance by comparing Fusarium-resistant and susceptible cultivars. The gene family consists of three homoeologous alleles of both RPL3A and RPL3B, which are located on chromosomes 4A (RPL3-B2), 4B (RPL3-B1), 4D (RPL3-B3), 5A (RPL3-A3), 5B (RPL3-A2) and 5D (RPL3-A1). Alternative splicing was detected in the TaRPL3-A2 gene. Sequence comparison revealed no amino acid differences between cultivars differing in Fusarium resistance. While using developed SNP markers we nevertheless found that one of the genes, namely, TaRPL3-A3 mapped close to a Fusarium resistance QTL (Qfhs.ifa-5A). The potential role of the RPL3 gene family in DON resistance of wheat is discussed.

Keywords

Deoxynivalenol Fusarium Wheat QTL mapping 

Notes

Acknowledgments

We thank Lindy Abas for critically reading the manuscript. This work was funded by the European commission (European Commission (QLRT-2000-02044, FUCOMYR ), the Austrian Federal Ministry for Education, Science and Culture (bm:bwk GZ 309.007/3-III/B/8b/2000), and the Iranian Presidential Technology Cooperation Office (TCO 31/35128-16/3/80).

References

  1. Bai GH, Desjardins AE, Plattner RD (2002) Deoxynivalenol-non-producing Fusarium graminearum causes initial infection, but does not disease spread in wheat spikes. Mycopathologia 153:91–98PubMedCrossRefGoogle Scholar
  2. Barakat A, Szick-Miranda K, Chang I.-F, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J (2001) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:398–415PubMedCrossRefGoogle Scholar
  3. Barbacid M, Vazquez D (1974) Binding of (acetyl-14C) trichodermin to the peptidyltransferase centre of eukaryotic ribosomes. Eur J Biochem 44(2):437–444PubMedCrossRefGoogle Scholar
  4. Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417PubMedCrossRefGoogle Scholar
  5. Breanach R ,Chambon P (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383CrossRefGoogle Scholar
  6. Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular Mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance) Theor Appl Genet 104:84–91PubMedCrossRefGoogle Scholar
  7. Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M. (2003) Molecular mapping of QTLs for Fusarium Head Blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508PubMedCrossRefGoogle Scholar
  8. Ciaffi M, Paolacci AR, D’Aloisio E, Tanzarella OA, Porceddu E (2005) Cloning and characterization of wheat PDI (protein disulfide isomerase) homoeologous genes and promoter sequences. Gene. doi:10.1016/j.gene.2005.07.032Google Scholar
  9. COMMISSION REGULATION (EC) No 856/2005 of 6 June 2005 amending Regulation (EC) No 466/2001 as regards Fusarium toxins. Official Journal of the European Union L 143:3–8Google Scholar
  10. Cundliffe E, Davies JE (1977) Inhibition of initiation, elongation and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob Agents Chemother 11:491–499PubMedGoogle Scholar
  11. Desjardins AE, Procter RH, Bai G, McCormick SP, Shaner G, Buechley G, Hohn T (1996) Reduced virulence of trichothecene-non-producing mutants of Gibberella zeae in wheat field tests. Mol Plant Microbe Interact 9:775–781Google Scholar
  12. Di R, Tumer NE (2005) Expression of a truncated form of ribosomal protein L3 confers resistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol. Mol Plant Microbe Interact 18(8):762–770PubMedCrossRefGoogle Scholar
  13. Endo TR, Gill B (1996) The deletion stocks of common wheat. J Hered 87:295–307Google Scholar
  14. Fried HM, Warner JR (1981) Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci 78(1):238–242PubMedCrossRefGoogle Scholar
  15. Giavalisco P, Wilson D, Kreitler T, Lehrach H, Klose J, Gobom J, Fucini P (2005) High heterogeneity within the ribosomal proteins of Arabidopsis thaliana 80S ribosome. Plant Mol Biol 57:577–591PubMedCrossRefGoogle Scholar
  16. Harris LJ, Gleddie SC (2001) A modified Rpl3 gene from rice confers tolerance of the Fusarium graminearum mycotoxin deoxynivalenol to transgenic tobacco. Physiol Mol Plant Pathol 58:173–171CrossRefGoogle Scholar
  17. Hoisington D, Khairallah M, Gonzalez-de-Leon D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. CIMMYT, Mexico CityGoogle Scholar
  18. Kang Z, Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiol Mol Plant Pathol 55:275–288CrossRefGoogle Scholar
  19. Lander ES, Green P, Abrahamson J, Barlow A, Daley MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  20. Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Ineract 18(12):1318–1324CrossRefGoogle Scholar
  21. Mager WH, Planta RJ, Ballesta JG, Lee JC, Mizuta K, Suzuki K, Warner JR, Woolford J (1997) a new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Nuc Acids Res 25:4872S–4875SCrossRefGoogle Scholar
  22. McCormick S (2003) The role of DON in pathogenicity. In: Fusarium head blight of wheat. American Phytopathological society, Minnesota, pp 165–183Google Scholar
  23. McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348CrossRefGoogle Scholar
  24. Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension cultures of the Fusarium Head Blight resistant wheat cultivar Frontana. Can J Plant Pathol 8:147–150CrossRefGoogle Scholar
  25. Miller JD, Ewen MA (1997) Toxic effects of deoxynivalenol and tissues of the spring wheat cultivars Frontana and Casavant. Nat Toxins 5:234–237PubMedCrossRefGoogle Scholar
  26. Mitterbauer R (2001) Molecular mechanisms of trichothecene resistance and development of a yeast-based bioassay for zearalenone. PhD thesis, University for Agricultural Sciences, Vienna, AustriaGoogle Scholar
  27. Mitterbauer R, Poppenberger B, Raditschnig A, Lucyshyn D, Lemmens M, Glössl J, Adam G. (2004) Toxin-dependent utilization of engineered ribosomal protein L3 limits trichothecene resistance in transgenic plants. Plant Biotechnol J 2:329–340PubMedCrossRefGoogle Scholar
  28. Murai J, Taira T, Ohta D (1999) Isolation and characterization of three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234:71–79PubMedCrossRefGoogle Scholar
  29. Nicholas KB, Nicholas HB (1997) GeneDoc: A tool for editing and editing multiple sequence alignments. Distributed by the author. http://www.cris.com/ketchup/genedoc.shtmlGoogle Scholar
  30. Nicholson P, Lees AK, Maurin N, Parry DW, Rezanoor HN (1996) Development of a PCR assay to identify and quantify Microdochium nivale var nivale and Microdochium nivale var majus in wheat. Physiol Mol Plant Pathol 48:257–271CrossRefGoogle Scholar
  31. Nishi R, Kidou S, Ucimiya H, Kato A (1993) The primary structure of two proteins from the large ribosomal subunit of rice. Biochim Biophys Acta 1216:110–112PubMedGoogle Scholar
  32. Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238CrossRefGoogle Scholar
  33. Peltz SW, Hammell AB, Cui Y, Yasenchak J, Puljanowski L, Dinman JD (1999) Ribosomal Protein L3 mutants alter translational fidelity and promote rapid loss of the yeast killer virus. Mol Cell Biol 19(1):384–391PubMedGoogle Scholar
  34. Pieters MN, Freijer J, Baars BJ, Fiolet DCM, van Klaveren J, Slob W (2002) Risk assessment of deoxynivalenol in food: concentration limits, exposure and effects. Adv Exp Med Biol 504:235–248PubMedGoogle Scholar
  35. Roeder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023Google Scholar
  36. Schultz LD, Friesen JD (1983) Nucleotide sequence of the tcm1 gene (ribosomal protein L3) of Saccharomyces cerevisiae. J Bacteriol 155(1):8–14PubMedGoogle Scholar
  37. Sears ER (1954) The aneuploids of common wheat. Research Bull 572, Missouri Ag Exp Sta 57 pGoogle Scholar
  38. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110(3):550–560PubMedCrossRefGoogle Scholar
  39. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25PubMedCrossRefGoogle Scholar
  40. Steiner B, Lemmens M, Griesser M, Scholz U, Schondlmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–224PubMedCrossRefGoogle Scholar
  41. Takumi S, Kosugi T, Murai K, Mori N, Nakamura C (2000) Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat. Gene 249:171–181PubMedCrossRefGoogle Scholar
  42. Utz HF, Melchinger AE (1996) PLABQTL: A program for composite interval mapping of QTL. J Agric Genomics http://www.ncgr.org/research/jag/papers96/paper196/indexp196.htmlGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Doris Lucyshyn
    • 1
  • Bernhard L. Busch
    • 1
    • 5
  • Shamsozoha Abolmaali
    • 1
    • 2
  • Barbara Steiner
    • 3
  • Elizabeth Chandler
    • 4
  • Forough Sanjarian
    • 2
  • Amir Mousavi
    • 2
  • Paul Nicholson
    • 4
  • Hermann Buerstmayr
    • 3
  • Gerhard Adam
    • 1
  1. 1.Institute of Applied Genetics and Cell Biology, Department of Applied Plant Sciences and Plant BiotechnologyBOKU - University of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Department of Plant BiotechnologyNational Institute of Genetic Engineering and Biotechnology (NIGEB)TehranIran
  3. 3.Institute for Biotechnology in Plant Production, Department of Agrobiotechnology - IFA TullnBOKU - University of Natural Resources and Applied Life SciencesTullnAustria
  4. 4.Department of Disease and Stress BiologyJohn Innes CentreNorwichUnited Kingdom
  5. 5.Max Planck Institute for Plant Breeding ResearchCologneGermany

Personalised recommendations