Advertisement

Molecular Genetics and Genomics

, Volume 277, Issue 3, pp 221–235 | Cite as

Gene expression dynamics in deer antler: mesenchymal differentiation toward chondrogenesis

  • István Gyurján Jr
  • Andrea Molnár
  • Adrienn Borsy
  • Viktor Stéger
  • László Hackler Jr
  • Zoltán Zomborszky
  • Péter Papp
  • Ernő Duda
  • Ferenc Deák
  • Péter Lakatos
  • László G. Puskás
  • László OroszEmail author
Original Paper

Abstract

Annual re-growth of deer antler represents a unique example of complete organ regeneration. Because antler mesenchymal cells retain their embryonic capacity to develop into cartilage or bone, studying antler development provides a natural system to follow gene expression changes during mesenchymal differentiation toward chondrogenic/osteogenic lineage. To identify novel genes involved either in early events of mesenchymal cell specialization or in robust bone development, we have introduced a 3 K heterologous microarray set-up (deer cDNA versus mouse template). Fifteen genes were differentially expressed; genes for housekeeping, regulatory functions (components of different signaling pathways, including FGF, TGFβ, Wnt), and genes encoding members of the Polycomb group were represented. Expression dynamics for genes are visualized by an expression logo. The expression profile of the gene C21orf70 of unknown function is described along with the effects when over-expressed; furthermore the nuclear localization of the cognate protein is shown. In this report, we demonstrate the particular advantage of the velvet antler model in bone research for: (1) identification of mesenchymal and precartilaginous genes and (2) targeting genes upregulated in robust cartilage development.

Keywords

Deer Antler Mesenchyme Heterologous microarray Expression logo C21orf70 

Notes

Acknowledgments

The authors are indebted to János Nagy for providing access to deer fetuses and developing antler samples; to Magdolna Tóth Péli, Csilla Sánta Török, Kornélia Szóráth Gálné, and Erzsébet Kusz for excellent technical assistance. Thanks are due to Balazs Bender for mice breeding; to Julianna Kobolak for MEF cells and electroporation facility (both of them at Agricultural Biotechnology Center); to János Kósa for his help in Real-time PCR analyses; to Tibor Vellai and Szabolcs Semsey for critical reading of the manuscript, and to Sankar Adhya (NIH), László Sugár, and János Szabad for their constant interest. This work was supported by grants OTKA T032205 to L.O. and T032255 to P.P., T034729 and T60659 to F.D., OM 0028/2001, OM 0278/2001 to L.O. and P.P., OM 0320/2004 to L.O., OM 255/2002 to F.D. from the National Research and Development Program NKFP; MTA/TKI/AKT-F 2003-2006 to L.O. from the Hungarian Academy of Sciences; 454/2003 from the Ministry of Health, Social and Family Affairs to L.O and 76-a/2000, 31/a/2001 from the Ministry of Agriculture and Regional Development to L.O.

Supplementary material

438_2006_190_MOESM1_ESM.doc (148 kb)
Supplementary material

References

  1. Aigner T (2002) Towards a new understanding and classification of chondrogenic neoplasias of the skeleton-biochemistry and cell biology of chondrosarcoma and its variants. Virchows Arch. 441:219–230CrossRefGoogle Scholar
  2. Allen SP, Maden M, Price JS (2002) A role for retinoic acid in regulating the regeneration of deer antlers. Dev Biol 251:409–423CrossRefGoogle Scholar
  3. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet 5:725–738CrossRefGoogle Scholar
  4. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316Google Scholar
  5. Banks JW, Newbry WJ (1983) In: Banks RD (ed) Antler development of cervidae. Cesar Kleburg Wildlife Research Institute, Kingsville, Texas, pp 279–306Google Scholar
  6. Benetti R, Del Sal G, Monte M, Paroni G, Brancolini C, Schneider C (2001) The death substrate Gas2 binds m-calpain and increases susceptibility to p53 dependent apoptosis. EMBO J 20:2702–2714CrossRefGoogle Scholar
  7. Beppu H, Kawabata` M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258CrossRefGoogle Scholar
  8. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890CrossRefGoogle Scholar
  9. Epstein CJ (1995) In: Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 749–794Google Scholar
  10. Faucheaux C, Nicholls BM, Allen S, Danks JA, Horton MA, Price JS (2004) Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler. Dev Dyn 231:88–97CrossRefGoogle Scholar
  11. Feng JQ, Chen D, Esparza J, Harris MA, Mundy GR, Harris SE (1995) Deer antler tissue contains two types of bone morphogenetic protein 4 mRNA transcripts. Biochim Biophys Acta 1263:163–168Google Scholar
  12. Feng JQ, Chen D, Ghosh-Choudhury N, Esparza J, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 transcripts in rapidly developing deer antler tissue contain an extended 5’ non-coding region arising from a distal promoter. Biochim Biophys Acta 1350:47–52Google Scholar
  13. Francis SM, Suttie JM (1998) Detection of growth factors and proto-oncogene mRNA in the growing tip of red-deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J Exp Zool 281:36–42CrossRefGoogle Scholar
  14. Gilbert SF (ed) (2002) In: Developmental biology. Sinauer Associates, Inc., Sunderland, Massachusetts, pp 504–512Google Scholar
  15. Goss RJ (1969) Principles of regeneration. Academic Press, New YorkGoogle Scholar
  16. Goss RJ (1983) In: Deer antlers. Regeneration, function and evolution. Academic Press, New YorkGoogle Scholar
  17. Grosshans J, Wieschaus E (2000) A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101:523–531CrossRefGoogle Scholar
  18. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263CrossRefGoogle Scholar
  19. Johnstone B, Yoo JU (1999) Autologous mesenchymal progenitor cells in articular cartilage repair. Clin Orthop Relat Res 367(Suppl):S156–S162CrossRefGoogle Scholar
  20. Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC, Oxley KM, Wyllie DH, Polgar T, Harte M, O’Neill LAJ, Qwarnstrom EE, Dower SK (2004) Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem 279:42703–42708CrossRefGoogle Scholar
  21. Kitajka K, Puskas LG, Zvara A, Hackler L Jr, Barcelo-Coblijn G, Yeo YK, Farkas T (2002) The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci USA 99:2619–2624CrossRefGoogle Scholar
  22. Korpos É, Molnár A, Papp P, Kiss I, Orosz L, Deák F (2005) Expression pattern of matrilins and other extracellular matrix proteins characterize distinct stages of cell differentiation during antler development. Matrix Biol 24:124–135CrossRefGoogle Scholar
  23. Kramer S, Okabe M, Hacohen N, Krasnow M, Hiromi Y (1999) Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 126:2515–2525Google Scholar
  24. Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M (2004) The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res 64:4728–4735CrossRefGoogle Scholar
  25. Li C, Clark DE, Lord EA, Stanton J, Suttie JM (2002) Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec 268:125–130CrossRefGoogle Scholar
  26. Li C, Suttie JM (2001) Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embriol 204:375–388CrossRefGoogle Scholar
  27. Lickert H, Cox B, Wehrle C, Taketo MM, Kemler R, Rossant J (2005) Dissecting Wnt/β-catenin signaling during gastrulation using RNA interference in mouse embryos. Development 132:2599–2609CrossRefGoogle Scholar
  28. Liu F, Ventura F, Doody J, Massague J (1995) Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 15:3479–86Google Scholar
  29. Menzel O, Vellai T, Takacs-Vellai K, Reymond A, Mueller F, Antonarakis SE, Guipponi M (2004) The Caenorhabditis elegans ortholog of C21orf80, a potential new protein O-fucosyltransferase, is required for normal development. Genomics 84:320–330CrossRefGoogle Scholar
  30. Minowada G, Jarvis LA, Chi CL, Neubüser A, Sun X, Haconen N, Krasnow MA, Martin GR (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475Google Scholar
  31. Miyake T, Hall BK (2000) All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22:138–147CrossRefGoogle Scholar
  32. Mukhopadhyay K, Lefebvre V, Zhou G, Garofalo S, Kimura JH, de Crombrugghe B (1995) Use of a new rat chondrosarcoma cell line to delineate a 119-base pair chondrocyte-specific enhancer element and to define active promoter segments in the mouse pro-alpha 1(II) collagen gene. J Biol Chem 270:27711–27719CrossRefGoogle Scholar
  33. Orend G, Huang W, Olayioye MA, Hynes NE, Chiquet-Ehrismann R (2003) Tenascin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4. Oncogene 22:3917–3926CrossRefGoogle Scholar
  34. Otte AP, Kwaks THJ (2003) Gene repression by Polycomb group protein complexes: a distinct complex for every occasion. Curr Opin Genet Dev 13:448–454CrossRefGoogle Scholar
  35. Pan D, Zhe X, Jakkaraju S, Taylor GA, Schuger L (2002) P311 induces a TGF-beta1-independent, nonfibrogenic myofibroblast phenotype. J Clin Invest 110:1349–1358CrossRefGoogle Scholar
  36. Price JS, Allen SP (2004) Exploring the mechanisms regulating regeneration of deer antlers. Phil Trans R Soc Lond 359:809–822CrossRefGoogle Scholar
  37. Price JS, Faucheux C (2001) In: Sim JS, Sunwoo HH, Hudson RJ, Jeon BT (eds) Antler science and product technology. Antler Science and Product Technology Research Center, Edmonton, Canada, pp 53–65Google Scholar
  38. Price JS, Oyajobi BO, Nalin AM, Frazer A, Russell RGG, Sandell LJ (1996) Chondrogenesis in the regenerating antler tip of red deer: collagen types I, IIA, IIB, and X expression demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Dev Dyn 203:332–347CrossRefGoogle Scholar
  39. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefGoogle Scholar
  40. Puskas LG, Hackler L Jr, Kovacs G, Kupihar Z, Zvara A, Micsik T, van Hummelen P (2002) Recovery of Cyanine-dye Nucleotide Triphosphates. Anal Biochem 305:279–281CrossRefGoogle Scholar
  41. Puskas LG, Zvara A, Hackler L Jr, van Hummelen P (2002) RNA amplification results in reproducible microarray data with slight ratio bias. Biotechniques 32:1330–1340Google Scholar
  42. Qian Z, Wilusz J (1994) GRSF-1: a poly(A)+ mRNA binding protein which interacts with a conserved G-rich element. Nucleic Acids Res 22:2334–2343CrossRefGoogle Scholar
  43. Reich A, Sapir A, Shilo BZ (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126:4139–4147Google Scholar
  44. Reymond A, Friedli M, Henrichsen CN, Chapot F, Deutsch S, Ucla C, Rossier C, Lyle R, Guipponi M, Antonarakis SE (2001) From PREDs and open reading frames to cDNA isolation: revisiting the Human Chromosome 21 transcription map. Genomics 78:46–54CrossRefGoogle Scholar
  45. Rickmann M, Fawcett LW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455Google Scholar
  46. Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: chondrosarcoma and other cartilaginous neoplasms. Cancer Genet Cytogenet 143:1–31CrossRefGoogle Scholar
  47. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg 75A:532–533Google Scholar
  48. Studler JM, Glowinski J, Levi-Strauss M (1993) An abundant mRNA of the embryonic brain persists at a high level in cerebellum, hippocampus and olfactory bulb during adulthood. Europ J Neurosci 5:614–623CrossRefGoogle Scholar
  49. Suzuki M, Mizutani-Koseki Y, Fujimara Y, Miyagishima H, Kaneko T, Takada Y, Akasaka T, Tanzawa H, Takihara Y, Nakano M, Masumoto H, Vidal M, Isono K, Koseki H (2002) Involvement of Polycomb-group gene Ring1B in the specification of the anterior-posterior axis in mice. Development 129:4171–4183Google Scholar
  50. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121CrossRefGoogle Scholar
  51. Voncken JW, Roelen BAJ, Roefs M, de Vries S, Verhoeven E, Marino S, Deschamps J, van Lohuizen M (2003) Rnf2(Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci 100:2468–2473CrossRefGoogle Scholar
  52. Xu Q, Wilkinson DG (1998) In Wilkinson DG (ed) In situ hybridization: a practical approach. Oxford University Press Inc., New York, pp 87–106Google Scholar
  53. Zacharias U, Norenberg U, Rathjen FG (1999) Functional interactions of the immunoglobulin superfamily member F11 are differentially regulated by the extracellular matrix proteins tenascin-R and tenascin-C. J Biol Chem 274:24357–24365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • István Gyurján Jr
    • 1
    • 2
  • Andrea Molnár
    • 1
    • 2
  • Adrienn Borsy
    • 1
    • 2
  • Viktor Stéger
    • 1
    • 2
  • László Hackler Jr
    • 3
  • Zoltán Zomborszky
    • 4
  • Péter Papp
    • 1
  • Ernő Duda
    • 5
  • Ferenc Deák
    • 5
  • Péter Lakatos
    • 6
  • László G. Puskás
    • 3
  • László Orosz
    • 1
    • 2
    Email author
  1. 1.Institute of GeneticsAgricultural Biotechnology CenterGödöllőHungary
  2. 2.Department of GeneticsEötvös Loránd University and Research Group for Molecular Genetics of the Hungarian Academy of SciencesBudapestHungary
  3. 3.Laboratory of Functional GenomicsBiological Research Center, Hungarian Academy of SciencesSzegedHungary
  4. 4.Department of Fish and Pet Animal Breeding, Faculty of Animal ScienceUniversity of KaposvárKaposvárHungary
  5. 5.Institute of BiochemistryBiological Research Center of the Hungarian Academy of SciencesSzegedHungary
  6. 6.First Department of Internal MedicineSemmelweis University Medical SchoolBudapestHungary

Personalised recommendations