Molecular Genetics and Genomics

, Volume 277, Issue 1, pp 57–70 | Cite as

The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair

  • Susanna Tronnersjö
  • Christine Hanefalk
  • Darius Balciunas
  • Guo-Zhen Hu
  • Niklas Nordberg
  • Eva Murén
  • Hans Ronne
Original Paper


The jumonji domain is a highly conserved bipartite domain made up of two subdomains, jmjN and jmjC, which is found in many eukaryotic transcription factors. The jmjC domain was recently shown to possess the histone demethylase activity. Here we show that the jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact in a two-hybrid system with 19 yeast proteins that include the RecQ helicase Sgs1, the silencing factors Esc1 and Sir4, the URI-type prefoldin Bud27 and the PIAS type SUMO ligase Nfi1/Siz2. Extensive interaction cross dependencies further suggest that the proteins form a larger complex. Consistent with this, 16 of the proteins also interact with a Bud27 two-hybrid bait, and three of them co-precipitate with TAP-tagged Gis1. The Gis1 jumonji domain can repress transcription when recruited to a promoter as a lexA fusion. This effect is dependent on both the jmjN and jmjC subdomains, as were all 19 two-hybrid interactions, indicating that the two subdomains form a single functional unit. The human Sgs1 homolog WRN also interacts with the Gis1 jumonji domain. Finally, we note that several jumonji domain interactors are related to proteins that are found in mammalian PML nuclear bodies.


Bud27 Gis1 jmjC Sgs1 Sumoylation 



We thank Pernilla Bjerling, Stefan Björklund, Claes Gustafsson, Magnus Hallberg, Natalie von der Lehr, Ann Mutvei and Claudio de Virgilio for helpful advice and Roger Brent and Jan Olof Nehlin for generous gifts of strains and plasmids. This work was supported by grants from the Swedish Research Council, the Erik and Mai Pehrsson Foundation and the Agrifungen program at SLU.


  1. Andrulis AD, Zappulla DC, Ansari A, Perrod S, Laiosa CV, Gartenberg MR, Sternglanz R (2002) Esc1, a nuclear protein required for Sir4-based plasmid anchoring and partitioning. Mol Cell Biol 22:8292–8301PubMedCrossRefGoogle Scholar
  2. Balciunas D, Ronne H (1999) Yeast genes GIS1-4: multicopy suppressors of the Gal- phenotype of snf1 mig1 srb8/10/11 cells. Mol Gen Genet 262:589–599PubMedCrossRefGoogle Scholar
  3. Balciunas D, Ronne H (2000) Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem Sci 25:274–276PubMedCrossRefGoogle Scholar
  4. Balciunas D, Gälman C, Ronne H, Björklund S (1999) The Med1 subunit of the yeast mediator complex is involved in both transcriptional activation and repression. Proc Natl Acad Sci USA 96:376–381PubMedCrossRefGoogle Scholar
  5. Bennett RJ, Sharp JA, Wang JC (1998) Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J Biol Chem 273:9644–9650PubMedCrossRefGoogle Scholar
  6. Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277:50934–50940PubMedCrossRefGoogle Scholar
  7. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592PubMedCrossRefGoogle Scholar
  8. Cheng C, Huang D, Roach PJ (1997) Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13:1–8PubMedCrossRefGoogle Scholar
  9. Chen Z, Zang J, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao Q, Pan CH, Dai S, Hagman J, Hansen K, Shi Y, Zhang G (2006) Structural insights into histone demethylation by JMJD2 family members. Cell 125:1–12CrossRefGoogle Scholar
  10. Clissold PM, Ponting CP (2001) JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2beta. Trends Biochem Sci 26:7–9PubMedCrossRefGoogle Scholar
  11. Enomoto T (2001) Function of RecQ family helicases: possible involvement of Bloom’s and Werner’s syndrome gene products in guarding genome integrity during DNA replication. J Biochem (Tokyo) 129:501–507Google Scholar
  12. Estojak J, Brent R, Golemis EA (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15:5820–5829PubMedGoogle Scholar
  13. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246PubMedCrossRefGoogle Scholar
  14. Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398PubMedGoogle Scholar
  15. Gasser SM, Cockell MM (2001) The molecular biology of the SIR proteins. Gene 279:1–16PubMedCrossRefGoogle Scholar
  16. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636PubMedCrossRefGoogle Scholar
  17. Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M, Vigneron M, Peter M, Krek W (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302:1208–1212PubMedCrossRefGoogle Scholar
  18. Gyuris J, Zervos AS, Brent R (1993) Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72:223–232PubMedCrossRefGoogle Scholar
  19. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 250:4102–4110Google Scholar
  20. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183PubMedCrossRefGoogle Scholar
  21. Hu F, Alcasabas AA, Elledge SJ (2001) Asf1 links Rad53 to control of chromatin assembly. Genes Dev 15:1061–1066PubMedCrossRefGoogle Scholar
  22. Ivy JM, Hicks JB, Klar AJ (1985) Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics 111:735–744PubMedGoogle Scholar
  23. Iwase M, Toh-e A (2001) Nis1 encoded by YNL078W: a neck protein of Saccharomyces cerevisiae. Gen Gen Sys 76:335–343CrossRefGoogle Scholar
  24. Jang YK, Wang L, Sancar GB (1999) RPH1 and GIS1 are damage-responsive repressors of PHR1. Mol Cell Biol 19:7630–7638PubMedGoogle Scholar
  25. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382PubMedCrossRefGoogle Scholar
  26. Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744PubMedCrossRefGoogle Scholar
  27. Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20:971–978PubMedCrossRefGoogle Scholar
  28. Kamens J, Brent R (1991) A yeast transcription assay defines distinct rel and dorsal DNA recognition sequences. New Biol 3:1005–1013PubMedGoogle Scholar
  29. Kawabe Y, Seki M, Seki T, Wang WS, Imamura O, Furuichi Y, Saitoh H, Enomoto T (2000) Covalent modification of the Werner’s syndrome gene product with the ubiquitin-related protein SUMO-1. J Biol Chem 275:20963–20966PubMedCrossRefGoogle Scholar
  30. Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123:593–605PubMedCrossRefGoogle Scholar
  31. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 12:4207–4318CrossRefGoogle Scholar
  32. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643PubMedCrossRefGoogle Scholar
  33. Kurischko C, Weiss G, Ottey M, Luca FC (2005) A role for the Saccharomyces cerevisiae regulation of Ace2 and polarized morphogenesis signaling network in cell integrity. Genetics 171:443–455PubMedCrossRefGoogle Scholar
  34. Li B, Howe L, Anderson S, Yates JR III, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278:8897–8903PubMedCrossRefGoogle Scholar
  35. Lisby M, Rothstein R (2004) DNA damage checkpoint and repair centers. Curr Opin Cell Biol 16:328–334PubMedCrossRefGoogle Scholar
  36. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849PubMedCrossRefGoogle Scholar
  37. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439PubMedGoogle Scholar
  38. Müller S, Ledl A, Schmidt D (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23:1998–2008PubMedCrossRefGoogle Scholar
  39. Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20:966–976PubMedCrossRefGoogle Scholar
  40. Negorev D, Maul GG (2001) Cellular proteins localized at and interacting with ND10/PML nuclear bodies/PODs suggest a functions of a nuclear depot. Oncogene 20:7234–7242PubMedCrossRefGoogle Scholar
  41. Ni L, Snyder M (2001) A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12:2147–2170PubMedGoogle Scholar
  42. Oshiro J, Han G-S, Iwanyshyn WM, Conover K, Carman GM (2003) Regulation of the yeast DPP1-encoded diacylglycerol pyrophosphate phosphatase by transcription factor Gis1p. J Biol Chem 278:31495–31503PubMedCrossRefGoogle Scholar
  43. Panse VG, Hardeland U, Werner T, Kuster B, Hurt E (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351PubMedCrossRefGoogle Scholar
  44. Pedruzzi I, Bürckert N, Egger P, De Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19:2569–2579PubMedCrossRefGoogle Scholar
  45. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complexes. Methods 24:218–229PubMedCrossRefGoogle Scholar
  46. Rabitsch KP, Toth A, Galova M, Schleiffer A, Schaffner G, Aigner E, Rupp C, Penkner AM, Moreno-Borchart AC, Primig M, Esposito RE, Klein F, Knop M, Nasmyth K (2001) A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11:1001–1009PubMedCrossRefGoogle Scholar
  47. Redon C, Pilch DR, Bonner WM (2006) Genetic analysis of Saccharomyces cerevisiae H2A serine 129 mutant suggests a functional relationship between H2A and the sister-chromatid cohesion partners Csm3-Tof1 for the repair of topoisomerase I-induced DNA damage. Genetics 172:67–76PubMedCrossRefGoogle Scholar
  48. Rondon AG, Jimeno S, Garcia-Rubio M, Aguilera A (2003) Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 278:39037–39043PubMedCrossRefGoogle Scholar
  49. Russnak R, Pereira S, Platt T (1996) RNA binding analysis of yeast REF2 and its two-hybrid interaction with a new gene product, FIR1. Gene Expr 6:241–258PubMedGoogle Scholar
  50. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103PubMedCrossRefGoogle Scholar
  51. Sanders SL, Weil PA (2000) Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex. J Biol Chem 18:13895–13900CrossRefGoogle Scholar
  52. Schmidt D, Müller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561–2574PubMedCrossRefGoogle Scholar
  53. Seeler J-S, Dejean A (1999) The PML nuclear bodies: actors or extras? Curr Opin Genet Dev 9:362–367PubMedCrossRefGoogle Scholar
  54. Seeler J-S, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699PubMedCrossRefGoogle Scholar
  55. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953PubMedCrossRefGoogle Scholar
  56. Strasser K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondon AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308PubMedCrossRefGoogle Scholar
  57. Takahashi Y, Toh-e A, Kikuchi Y (2001) A novel factor for the SUMO/Smt3 conjugation of yeast septins. Gene 275:223–231PubMedCrossRefGoogle Scholar
  58. Takahashi Y, Toh-e A, Kikuchi Y (2003) Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. J Biochem 133:415–422PubMedCrossRefGoogle Scholar
  59. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T (1995) Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev 9:1211–1222PubMedGoogle Scholar
  60. Tang HY, Xu J, Cai M (2000) Pan1p, End3p, and Sla1p, three yeast proteins required for normal cortical actin cytoskeleton organization, associate with each other and play essential roles in cell wall morphogenesis. Mol Cell Biol 20:12–25PubMedCrossRefGoogle Scholar
  61. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of jmjC domain-containing proteins. Nature 439:811–816PubMedCrossRefGoogle Scholar
  62. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627PubMedCrossRefGoogle Scholar
  63. Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC (2001) Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem 276:32948–32955PubMedCrossRefGoogle Scholar
  64. Wegierski T, Billy E, Nasr R, Filipowicz W (2001) Bms1p, a G-domain containing protein, associates with Rvl1p and is required for 18S rDNA biogenesis in yeast. RNA 7:1254–1267PubMedCrossRefGoogle Scholar
  65. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:1–15CrossRefGoogle Scholar
  66. Wohlschlegel JA, Johnson ES, Reed SI, Yates JA III (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668PubMedCrossRefGoogle Scholar
  67. Woods A, Cheung PC, Smith FC, Davison MD, Scott J, Beri RK, Carling D (1996) Characterization of AMP-activated protein kinase β and γ subunits: assembly of the heterotrimeric complex in vitro. J Biol Chem 271:10282–10290PubMedCrossRefGoogle Scholar
  68. Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17:654–663PubMedCrossRefGoogle Scholar
  69. Yamamoto H, Ihara M, Matsuura Y, Kikuchi A (2003) Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J 22:2047–2059PubMedCrossRefGoogle Scholar
  70. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a jmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:1–13CrossRefGoogle Scholar
  71. Yuan DS (2000) Zinc-regulated genes in Saccharomyces cerevisiae revealed by transposon tagging. Genetics 156:45–58PubMedGoogle Scholar
  72. Zhang S, Skalsky Y, Garfinkel DJ (1999) MGA2 or SPT23 is required for transcription of the delta 9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151:473–483PubMedGoogle Scholar
  73. Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP (1999) A role for PML and the nuclear body in genomic stability. Oncogene 18:7941–7947PubMedCrossRefGoogle Scholar
  74. Zhong S, Salomoni P, Pandolfi PP (2000) The transcriptional role of PML and the nuclear body. Nat Cell Biol 2:E85-E90PubMedCrossRefGoogle Scholar
  75. Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. J Biol Chem 279:32262–32268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Susanna Tronnersjö
    • 1
    • 2
  • Christine Hanefalk
    • 1
  • Darius Balciunas
    • 1
    • 2
    • 3
  • Guo-Zhen Hu
    • 1
    • 2
  • Niklas Nordberg
    • 2
  • Eva Murén
    • 1
    • 2
  • Hans Ronne
    • 1
    • 2
  1. 1.Department of Plant Biology and Forest GeneticsSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
  3. 3.Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisUSA

Personalised recommendations