Molecular Genetics and Genomics

, Volume 276, Issue 3, pp 230–241 | Cite as

Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication

  • Benjamin Kilian
  • Hakan Özkan
  • Jochen Kohl
  • Arndt von Haeseler
  • Francesca Barale
  • Oliver Deusch
  • Andrea Brandolini
  • Cemal Yucel
  • William Martin
  • Francesco Salamini
Original Paper


Archaeological remains indicate that the origin of western agriculture occurred in a brief period about 10,500 years ago in a region of the Middle East known as the Fertile Crescent, where the wild progenitors of several key agricultural cereal species are endemic. Domestication entailed the appearance of agronomic traits such as seed size and threshability. For a representative sample of 20 domesticated barley (Hordeum vulgare) lines, including 13 two-rowed and 7 six-rowed varieties, we determined the haplotypes at seven loci—Adh2, Adh3, Amy1, Dhn9, GAPDH, PEPC and WAXY encompassing 5,616 bases per line—and compared them to the haplotypes at the same loci for 25 wild forms (Hordeum spontaneum) collected within and outside the Fertile Crescent. In comparisons of wild versus domesticated barley, the number of haplotypes (70 vs. 17), average nucleotide diversity, π, (0.0077 vs. 0.0028), and Watterson’s theta at silent sites (0.0104 vs. 0.0028) was reduced in domesticated lines. Two loci, Amy1 and PEPC, were monomorphic in domesticated lines; Amy1 and GAPDH produced significant values of Tajima’s D. At GAPDH, π was slightly higher in domesticated than wild forms, due to divergent high-frequency haplotypes; for the remaining six loci, 87% of nucleotide diversity has been lost in the domesticated forms. Bottlenecks acting on neutrally evolving loci either during the domestication process, during subsequent breeding, or both, are sufficient to account for reduced diversity and the results of Tajima’s test, without the need to evoke selection at these loci. Phylogenetic networks data uncover distinct wild and domesticated barley genotypes and suggest that barley may have been domesticated in the Jordan valley. Because, based on AFLP data, the domesticated Turkish cultivars had a genetic basis as large as that present in large germplasm collections, all comparisons provided in this paper are of general value more than being restricted to the Turkish barley germplasm.


Barley domestication Haplotypes Nucleotide diversity Domestication bottlenecks 



This work was supported by the Deutsche Forschungsgemeinschaft.

Supplementary material


  1. Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595PubMedCrossRefGoogle Scholar
  2. Badr A, Müller KJ, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510PubMedGoogle Scholar
  3. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  4. Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res Camb 77:213–218Google Scholar
  5. Bundock P, Henry RJ (2004) Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theor Appl Genet 109:543–551PubMedCrossRefGoogle Scholar
  6. Casas AM, Yahiaoui S, Ciudad F, Igartua E. (2005) Distribution of MWG699 polymorphism in Spanish European barleys. Genome 48:41–45PubMedCrossRefGoogle Scholar
  7. Castiglioni P, Pozzi C, Heun M, Terzi V, Muller KJ, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056PubMedGoogle Scholar
  8. Chalmers KJ, Waugh R, Watters J, Forster BP, Nevo E, Abbott RJ, Powell W (1992) Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theor Appl Genet 84:313–322CrossRefGoogle Scholar
  9. Dawson IK, Chalmers KJ, Waugh R, Powell W (1993) Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol Ecol 2:151–159PubMedCrossRefGoogle Scholar
  10. Diamond J (1997) Guns, germs and steel. Random House, LondonGoogle Scholar
  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  12. Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279PubMedCrossRefGoogle Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  14. Harlan JR (1976) Barley. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 93–98Google Scholar
  15. Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73PubMedCrossRefGoogle Scholar
  16. Jana S, Pietrzak MI, Srivastava JP, Holwerda BC, Thai KM. (1987) Genetic diversity in wild barley (Hordeum spontaneum) populations of the Fertile Crescent. Barley Genet 5:63–73Google Scholar
  17. Kanazin V, Talbert H, See D, DeCamp P, Nevo E, Blake T (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol Biol 48:529–537PubMedCrossRefGoogle Scholar
  18. Kolodinska Brantestam A, von Bothmer R, Dayteg C, Rashal I, Tuvesson S, Weibull J (2004) Inter simple sequence repeat analysis of genetic diversity and relationships in cultivated barley of Nordic and Baltic origin. Hereditas 141:186–192PubMedCrossRefGoogle Scholar
  19. Komatsuda T, Maxim P, Senthil N, Mano Y (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995PubMedCrossRefGoogle Scholar
  20. Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–2603PubMedCrossRefGoogle Scholar
  21. Lin J-Z, Brown AHD, Clegg MT (2001) Heterogeneous geographic patterns of nucleotide sequence diversity between two alcohol dehydrogenase genes in wild barley (Hordeum vulgare subspecies spontaneum). Proc Natl Acad Sci USA 98:531–536PubMedCrossRefGoogle Scholar
  22. Lin J-Z, Morrell PL, Clegg MT (2002) The influence of linkage and inbreeding on patterns of nucleotide sequence diversity at duplicate alcohol dehydrogenase loci in wild barley (Hordeum vulgare ssp. spontaneum). Genetics 162:2007–2015PubMedGoogle Scholar
  23. Molina-Cano J-L, Russell JR, Moralejo MA, Escacena JL, Arias G, Powell W (2005) Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor Appl Genet 110:613–619PubMedCrossRefGoogle Scholar
  24. Morrell PL, Lundy KE, Clegg MT (2003) Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc Natl Acad Sci USA 100:10812–10817PubMedCrossRefGoogle Scholar
  25. Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102:2442–2447PubMedCrossRefGoogle Scholar
  26. Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotech 14:214–219PubMedCrossRefGoogle Scholar
  27. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  28. Nevo E, Beiles A, Kaplan D, Starch N, Zohary D (1986a) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum in Turkey. Genetica 68:203–213CrossRefGoogle Scholar
  29. Nevo E, Zohary D, Beiles A, Kaplan D (1986b) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum (Poaceae) in Iran. Plant Syst Evol 153:141–164CrossRefGoogle Scholar
  30. Nevo E, Zohary D, Brown AHD, Harber M (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33:815–833CrossRefGoogle Scholar
  31. Paterson AH (2002) What has QTL mapping taught us about plant domestication? New Phytol 154:591–608CrossRefGoogle Scholar
  32. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1717PubMedCrossRefGoogle Scholar
  33. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  34. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  35. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  36. Russell J, Booth A, Fuller F, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398PubMedCrossRefGoogle Scholar
  37. Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Genet Rev 3:429–441Google Scholar
  38. Salamini F, Heun M, Brandolini A, Ozkan H, Wunder J (2004) Comment on AFLP data and the origins of domesticated crops. Genome 47:615–620PubMedCrossRefGoogle Scholar
  39. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  40. Schneider K, Borchardt DC, Schäfer-Pregl R, Nagl N, Glass C, Jeppson A, Gebhardt C, Salamini F (1999) PCR-based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Mol Gen Genet 262:515–524PubMedCrossRefGoogle Scholar
  41. Schneider K, Weisshaar B, Borchardt DC, Salamini F (2001) SNP frequency and allelic haplotype structure of Beta vulgaris expressed genes. Mol Breed 8:63–74CrossRefGoogle Scholar
  42. Snow L, Brody T (1984) Genetic variation of H. spontaneum in Israel Eco-Geographical Races, detected by trait measurements. Pl Syst Evol 145:15–28CrossRefGoogle Scholar
  43. Søgaard B, von Wettstein-Knowles P (1987) Barley: genes and chromosomes. Carlsberg Res Comm 52:123–196CrossRefGoogle Scholar
  44. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  45. Taketa S, Kikuchi S, Awayama T, Yamamoto S, Ichii M, Kawasaki S (2004) Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor Appl Genet 108:1236–1242PubMedCrossRefGoogle Scholar
  46. Tanno K, Takeda K (2004) On the origin of six-rowed barley with brittle rachis, agriocrithon [Hordeum vulgare ssp. vulgare f. agriocrithon (Aberg)]. Theor Appl Genet 110:145–150PubMedCrossRefGoogle Scholar
  47. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225PubMedCrossRefGoogle Scholar
  48. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655PubMedCrossRefGoogle Scholar
  49. Vinh LS, von Haeseler A (2004) IQPNN: moving fast through tree space and stopping in time. Mol Biol Evol 21:1565–1571CrossRefGoogle Scholar
  50. Wright SI, Gaut BS (2005) Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol 22:506–519PubMedCrossRefGoogle Scholar
  51. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artifical selection on the maize genome. Science 308:1310–1314PubMedCrossRefGoogle Scholar
  52. Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Applification. Publication No:858A1Google Scholar
  53. Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Benjamin Kilian
    • 1
    • 5
  • Hakan Özkan
    • 2
  • Jochen Kohl
    • 3
  • Arndt von Haeseler
    • 3
  • Francesca Barale
    • 6
  • Oliver Deusch
    • 5
  • Andrea Brandolini
    • 4
  • Cemal Yucel
    • 2
  • William Martin
    • 5
  • Francesco Salamini
    • 1
    • 6
  1. 1.Max-Planck-Institute for Plant Breeding ResearchKoelnGermany
  2. 2.Department of Field Crops, Faculty of AgricultureUniversity of CukurovaAdanaTurkey
  3. 3.Institute for BioinformaticsHeinrich-Heine-Universitaet DuesseldorfDüsseldorfGermany
  4. 4.Istituto Sperimentale per la Cerealicoltura - CRAS. Angelo Lodigiano, (LO)Italy
  5. 5.Institute for Botany IIIHeinrich-Heine-Universitaet DuesseldorfDüsseldorfGermany
  6. 6.Fondazione Parco Tecnologico PadanoLodiItaly

Personalised recommendations