Advertisement

Molecular Genetics and Genomics

, Volume 276, Issue 2, pp 101–112 | Cite as

Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.)

  • Noel O. I. Cogan
  • Rebecca C. Ponting
  • Anita C. Vecchies
  • Michelle C. Drayton
  • Julie George
  • Peter M. Dracatos
  • Mark P. Dobrowolski
  • Timothy I. Sawbridge
  • Kevin F. Smith
  • Germán C. Spangenberg
  • John W. Forster
Original Paper

Abstract

Molecular genetic marker development in perennial ryegrass has largely been dependent on anonymous sequence variation. The availability of a large-scale EST resource permits the development of functionally-associated genetic markers based on SNP variation in candidate genes. Genic SNP loci and associated haplotypes are suitable for implementation in molecular breeding of outbreeding forage species. Strategies for in vitro SNP discovery through amplicon cloning and sequencing have been designed and implemented. Putative SNPs were identified within and between the parents of the F1(NA6 × AU6) genetic mapping family and were validated among progeny individuals. Proof-of-concept for the process was obtained using the drought tolerance-associated LpASRa2 gene. SNP haplotype structures were determined and correlated with predicted amino acid changes. Gene-length LD was evaluated across diverse germplasm collections. A survey of SNP variation across 100 candidate genes revealed a high frequency of SNP incidence (c. 1 per 54 bp), with similar proportions in exons and introns. A proportion (c. 50%) of the validated genic SNPs were assigned to the F1(NA6 × AU6) genetic map, showing high levels of coincidence with previously mapped RFLP loci. The perennial ryegrass SNP resource will enable genetic map integration, detailed LD studies and selection of superior allele content during varietal development.

Keywords

Candidate gene Amplicon cloning Haplotype Linkage disequilibrium Asr gene 

Notes

Acknowledgments

This work was supported by funding from the Victorian Department of Primary Industries, Dairy Australia Ltd., the Geoffrey Gardiner Dairy Foundation, Meat and Livestock Australia Ltd. and the Molecular Plant Breeding Cooperative Research Centre (MPB CRC). The authors thank Prof. Michael Hayward (Rhydgoch Genetics, Aberystwyth, UK) for careful critical reading of the manuscript.

References

  1. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  2. Bamshad M, Wooding SP (2003) Signatures of natural selection in the human genome. Nature Revs Genet 4:99–111CrossRefGoogle Scholar
  3. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualisation of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  4. Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vaske D, Register III JC, Tingey SV, Rafalski A (2002) Insertion–deletion polymorphisms in 3′-regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547PubMedCrossRefGoogle Scholar
  5. Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD (1999) Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor Appl Genet 99:192–198CrossRefGoogle Scholar
  6. Buetow KH, Edmonson MN, Cassidy AB (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet 21:323–325PubMedCrossRefGoogle Scholar
  7. Bundock PC, Christopher JT, Eggler P, Ablett G, Henry RJ, Holton TA (2003) Single nucleotide polymorphisms in cytochrome P450 genes from barley. Theor Appl Genet 106:676–682PubMedGoogle Scholar
  8. Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo M-C, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947PubMedCrossRefGoogle Scholar
  9. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19PubMedCrossRefGoogle Scholar
  10. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207PubMedCrossRefGoogle Scholar
  11. Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:364–380PubMedCrossRefGoogle Scholar
  12. Faville M, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Candidate gene-based molecular marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32PubMedCrossRefGoogle Scholar
  13. Flint-Garcia S.A., Thornsberry JM, Buckler IV ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374CrossRefGoogle Scholar
  14. Forster JW, Jones ES, Kölliker R, Drayton MC, Dupal MP, Guthridge KM, Smith KF (2001) DNA profiling in outbreeding forage species. In: Henry R (ed) Plant genotyping—the DNA fingerprinting of plants. CABI Press, Wallingford, pp 299–320Google Scholar
  15. Forster JW, Jones ES, Batley J, Smith KF (2004) Molecular marker-based genetic analysis of pasture and turf grasses. In: Hopkins A, Wang Z-Y, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer, Dordrecht, pp 197–239CrossRefGoogle Scholar
  16. Gaut BS, Clegg MT (1993) Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum) (Poaceae). Genetics 135:1091–1097PubMedGoogle Scholar
  17. Hayashi K, Hashimoto N, Diagen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:121–1220Google Scholar
  18. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450PubMedCrossRefGoogle Scholar
  19. Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P, (2002) Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84:1127–1135PubMedCrossRefGoogle Scholar
  20. Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415CrossRefGoogle Scholar
  21. Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet C, Forster JW (2002a) An enhanced molecular marker-based map of perennial ryegrass (Lolium perenne L.) reveals comparative relationships with other Poaceae species. Genome 45:282–295CrossRefGoogle Scholar
  22. Jones ES, Dupal MD, Dumsday JL, Hughes LJ, Forster JW (2002b) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584CrossRefGoogle Scholar
  23. Ingvarsson I (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953PubMedCrossRefGoogle Scholar
  24. Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Gräner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genom 270:24–33CrossRefGoogle Scholar
  25. Lopez C, Piegu B, Cooke R, Delseny M, Tohmé J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431PubMedCrossRefGoogle Scholar
  26. Lynch D, Lidgett A, McInnes R, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.). J Plant Physiol 159:653–660CrossRefGoogle Scholar
  27. Meyer P (1995) Understanding and controlling transgene expression. Trend Biotech 13:332–337CrossRefGoogle Scholar
  28. Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1367PubMedCrossRefGoogle Scholar
  29. Palumbi SR, Baker CS (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435PubMedGoogle Scholar
  30. Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306PubMedCrossRefGoogle Scholar
  31. Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–176PubMedGoogle Scholar
  32. Przeworski M (2002) The signature of positive selection at randomly chosen loci. Genetics 160:1179–1189PubMedGoogle Scholar
  33. Rafalski A (2002a) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100CrossRefGoogle Scholar
  34. Rafalski JA (2002b) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333CrossRefGoogle Scholar
  35. Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111PubMedCrossRefGoogle Scholar
  36. Rickert AM, Kim JH, Meyer S, Nagel A, Ballvora A, Oefner PJ, Gebhardt C (2003) First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotech J 1:399–411CrossRefGoogle Scholar
  37. Robin C, Lyman RF, Long AD, Langley CH, Mackay TFC (2002) hairy: a quantitative trait locus for drosophila sensory bristle number. Genetics 162:155–164PubMedGoogle Scholar
  38. Savolainen O, Langley CH, Lazzaro BP, Helen F (2000) Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol 17:645–655PubMedGoogle Scholar
  39. Sawbridge T, Ong E.-K, Binnion C, Emmerling M, McInnes R, Meath K, Nguyen N, Nunan K., O’Neill M, O’Toole F, Rhodes C, Simmonds J, Tian P, Wearne K, Webster T, Winkworth A, Spangenberg G (2003) Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.). Plant Sci 165:1089–1100CrossRefGoogle Scholar
  40. Simko I, Haynes KG, Ewing EE, Costanzo S, Christ BJ, Jones RW (2004) Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association test and genetic linkage analysis. Mol Genet Genom 271:552–531Google Scholar
  41. Skøt L, Humphreys J, Armstead IP, Humphreys MO, Gallagher JA, Thomas ID (2005) Approaches for associating molecular polymorphisms with phenotypic traits based on linkage disequilibrium in natural populations of Lolium perenne. In: Humphreys MO (ed) Molecular breeding of the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Netherlands, p. 157Google Scholar
  42. Spangenberg GC, Forster JW, Edwards D, John U, Mouradov A, Emmerling M, Batley J, Felitti S, Cogan NOI, Smith KF, Dobrowolski MP (2005) Future directions in the molecular breeding of forage and turf. In: Humphreys MO (ed) Molecular breeding of the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Netherlands, pp 83–97Google Scholar
  43. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431–437PubMedCrossRefGoogle Scholar
  44. Sorrells ME, Wilson WA (1997) Direct classification and selection of superior alleles for crop improvement. Crop Sci 37:691–697CrossRefGoogle Scholar
  45. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction. Am J Hum Genet 73:1162–1169PubMedCrossRefGoogle Scholar
  46. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  47. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler IV ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  48. Vaidyanathan R, Kuruvilla S, Thomas G (1999) Characterisation and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci 140:25–36CrossRefGoogle Scholar
  49. Vecchies AC, Ponting RC, Drayton MC, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2005) Integration of perennial ryegrass (Lolium perenne L.) genetic maps using gene-associated SNPs. In: Humphreys MO (ed.) Molecular breeding of the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Netherlands, p 142Google Scholar
  50. Yang WC, Bai XD, Kabelka E, Eaton C, Kamoun S, Van der Knapp E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer-aided analysis of expressed sequence tags. Mol Breed 14:21–34CrossRefGoogle Scholar
  51. Zhang D-X, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584PubMedCrossRefGoogle Scholar
  52. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Noel O. I. Cogan
    • 1
  • Rebecca C. Ponting
    • 1
  • Anita C. Vecchies
    • 1
  • Michelle C. Drayton
    • 1
  • Julie George
    • 1
  • Peter M. Dracatos
    • 1
  • Mark P. Dobrowolski
    • 2
    • 3
  • Timothy I. Sawbridge
    • 1
  • Kevin F. Smith
    • 2
    • 3
  • Germán C. Spangenberg
    • 1
  • John W. Forster
    • 1
  1. 1.Primary Industries Research Victoria and Molecular Plant Breeding Cooperative Research CentreVictorian AgriBiosciences CentreBundooraAustralia
  2. 2.Primary Industries Research VictoriaHamilton CentreHamiltonAustralia
  3. 3.Molecular Plant Breeding Cooperative Research CentreVictorian AgriBiosciences CentreBundooraAustralia

Personalised recommendations