Molecular Genetics and Genomics

, Volume 275, Issue 6, pp 578–592 | Cite as

Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence

  • M. Laura Ramos
  • Geraldine Fleming
  • Ye Chu
  • Yukio Akiyama
  • Maria Gallo
  • Peggy Ozias-Akins
Original Paper

Abstracts

Comparative genomic and cDNA sequence analysis of ara h 2, a major peanut allergen, and a related conglutin ara h 6 were performed in Arachis hypogaea L. and its putative progenitors, Arachis duranensis and Arachis ipaensis. The complete identity between sequences encoding Ara h 2 isoforms demonstrated that these are homeologous genes and represent orthologs from diploid ancestors. Three copies of ara h 6 were identified in A. hypogaea, one of them located in the A-genome and the other two in the B-genome. Expression analysis showed higher levels of ara h 2 transcripts compared with ara h 6. Dual-labeled genomic in situ hybridization permitted identification of two subgenomes, each of which contained one pair of ara h 2-ara h 6 signals localized by fluorescence in situ hybridization. Characterization of genomic clones showed close genetic linkage between Ara h 2.02 and one copy of ara h 6 in the B-genome. The physical linkage may have arisen by tandem duplication and divergence of an ancestral gene. A gene duplication event specific to the B-genome progenitor has resulted in ara h 6 paralogs. These data provide further evidence for progenitor relationships and genomic organization of the conglutin gene family in the genus Arachis and could contribute to the development of a hypoallergenic peanut.

Keywords

Ara h 2 Ara h 6 Conglutins Peanut allergens Homeologous genes Orthologous genes 

Notes

Acknowledgements

This work was funded by a USDA-CSREES-administered special grant (00-34420-9178), the Georgia Peanut Commodity Commission and the Peanut Foundation. The authors thank Joann Conner for assistance with sequence analysis, Gunawati Gunawan for assistance with sequencing in house, Evelyn Morgan for assistance with embryo tissues, Shailendra Goel for assistance with image analysis and Anne Bell for her technical assistance. They also thank Bert Abbott, Clemson University, for providing peanut genomic and cDNA libraries and the Pratt Lab, UGA Athens Campus, for sequencing and bioinformatics support.

Supplementary material

References

  1. Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741PubMedCrossRefGoogle Scholar
  2. Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 114(1):127–130CrossRefPubMedGoogle Scholar
  3. Burks AW, Williams LW, Connaughton C, Cockrell G, O’Brien TJ, Helm RM (1992a) Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 90:962–969CrossRefGoogle Scholar
  4. Burks AW, Williams LW, Thresher W, Connaughton C, Cockrell G, Helm RM (1992b) Allergenicity of peanut and soybean extracts altered by chemical or thermal denaturation in patients with atopic dermatitis and positive food challenges. J Allergy Clin Immunol 90:889–897CrossRefGoogle Scholar
  5. Burks AW, Shin D, Cockrell G, Stanley JS, Helm RM, Bannon GA (1997) Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem 245:334–339CrossRefPubMedGoogle Scholar
  6. Burks W, Sampson HA, Bannon GA (1998) Peanut allergens. Allergy 53:725–730PubMedCrossRefGoogle Scholar
  7. Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot (Lond) 92:107–127CrossRefGoogle Scholar
  8. Chatel JM, Bernard H, Orson FM (2003) Isolation and characterization of two complete Ara h 2 isoforms cDNA. Allergy Immunol 131:14–18CrossRefGoogle Scholar
  9. Dodo H, Konan K, Viquez O (2005) A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep 5:67–73PubMedCrossRefGoogle Scholar
  10. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  11. Ewing B, Hiller M, Wendl C, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assesment.Genome Res 8:175–185PubMedGoogle Scholar
  12. Fedak G, Han F (2005) Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 109:360–367CrossRefPubMedGoogle Scholar
  13. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedGoogle Scholar
  14. Fukui K (1996) Plant chromosomes at mitosis. CRC Press, Boca, Raton, FLGoogle Scholar
  15. Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [ Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009CrossRefPubMedGoogle Scholar
  16. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  17. Gu Z, Nicolae D, Lu HH, Li WH (2002) Rapid divergence in expression between duplicated genes inferred from microarray data. Trends Genet 18:609–613CrossRefPubMedGoogle Scholar
  18. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66CrossRefPubMedGoogle Scholar
  19. Guerche P, Tire C, De Sa FG, De Clercq A, Van Montagu M, Krebbers E (1990) Differential expression of the Arabidopsis 2S albumin genes and the effect of increasing gene family size. Plant Cell 2:469–478CrossRefPubMedGoogle Scholar
  20. Hales BJ, Bosco A, Mills KL, Hazell LA, Loh R, Holt PG, Thomas WR (2004) Isoforms of the major peanut allergen Ara h 2: IgE binding in children with peanut allergy. Int Arch Allergy Immunol 135:101–107CrossRefPubMedGoogle Scholar
  21. Han FP, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T (2003) Characterization of six wheat x Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome 46:490–495CrossRefPubMedGoogle Scholar
  22. Harberer G, Hindemitt T, Meyers BC, Mayer KEX (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022CrossRefPubMedGoogle Scholar
  23. de Jong EC, Van Zijverden M, Spanhaak S, Koppelman SJ, Pellegrom H, Penninks AH (1998) Identification and partial characterization of multiple major allergens in peanut proteins. Clin Exp Allergy 28:743–751CrossRefPubMedGoogle Scholar
  24. Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263:796–805CrossRefPubMedGoogle Scholar
  25. Jung S, Tate PL, Horn R, Kochert G, Moore K, Abbott AG (2003) The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered 94:334–340CrossRefPubMedGoogle Scholar
  26. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169CrossRefPubMedGoogle Scholar
  27. Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M., Becker WM (1999) Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol 119:265–274CrossRefPubMedGoogle Scholar
  28. Kochert G (1991) Restriction fragment length polymorphism in plants and its implications. Subcell Biochem 17:167–190PubMedGoogle Scholar
  29. Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence of the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291CrossRefGoogle Scholar
  30. Koppelman SJ, Vlooswijk RA, Knippels LM, Hessing M, Knol EF, van Reijsen FC, Bruijnzeel-Koomen CA (2001) Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy 56:132–137CrossRefPubMedGoogle Scholar
  31. Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF (2004) Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy 34:583–590CrossRefPubMedGoogle Scholar
  32. Koppelman SJ, de Jong GA, Laaper-Ertmann M, Peeters KA, Knulst AC, Hefle SL, Knol EF (2005) Purification and immunoglobulin E-binding properties of peanut allergen Ara h 6: evidence for cross-reactivity with Ara h 2. Clin Exp Allergy 35:490–497CrossRefPubMedGoogle Scholar
  33. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327CrossRefPubMedGoogle Scholar
  34. Luo M, Dang P, Guo Z, He G, Holbrook CC, Bausher MG, Lee RD (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353CrossRefGoogle Scholar
  35. Marasek A, Hasterok R, Wiejacha K, Orlikowska T (2004) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7CrossRefPubMedGoogle Scholar
  36. Morcillo F, Aberlenc-Bertossi F, Hamon S, Duval Y (1998) Differential accumulation of storage proteins, 7S globulins, during zygotic and somatic embryos development in oil palm (Elaeis guineensis Jacq.). Plant Physiol Biochem 36:509–514CrossRefGoogle Scholar
  37. Morcillo F, Hartmann C, Duval Y, Tregear JW (2001) Regulation of 7S globulin gene expression in zygotic and somatic embryos of oil palm. Physiol Plant 112:233–243CrossRefPubMedGoogle Scholar
  38. Moscone EA, Matzke MA, Matzke AJ (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236CrossRefGoogle Scholar
  39. Ozias-Akins P, Ramos ML, Chu Y (2006) Hypoallergenic foods beyond infant formulas. In: Food allergy:comprehension, treatment, and prevention. ASM Press, Herndon, VA (in press)Google Scholar
  40. Paik-Ro OG, Seih JC, Smith RL (2002) Seed-specific, developmentally regulated genes of peanut. Theor Appl Genet 104:236–240CrossRefPubMedGoogle Scholar
  41. Pham TS, Rudner EJ (2000) Peanut allergy. Cutis 65:285–289PubMedGoogle Scholar
  42. Pumphrey RSH, Wilson PB, Faragher EB, Edwards SR (1999) Specific immunoglobulin E to peanut, halzelnut and brazil nut in 731 patients: similar patterns found at all ages. Clin Exp Allergy 29:1256–1259CrossRefPubMedGoogle Scholar
  43. Rabjohn P, Helm EM, Stanley JS, West CM, Sampson HA, Burks AW, Bannon GA (1999) Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Invest 103:535–542PubMedCrossRefGoogle Scholar
  44. Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabacea) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262CrossRefGoogle Scholar
  45. Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Press, Cold Spring HarborGoogle Scholar
  46. Sambrook J, Fristch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. 2nd edn. Cold Spring harbor Press, Cold Spring Harbor, NYGoogle Scholar
  47. Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91(9):1294–1303CrossRefGoogle Scholar
  48. Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetics studies of putative genome donors. Euphytica 27:665–675CrossRefGoogle Scholar
  49. Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, Helm RM, West CM, Bannon GA (1997) Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 342:244–253CrossRefPubMedGoogle Scholar
  50. Suhr M, Wicklein D, Lepp U, Becker W-M (2004) Isolation and characterization of natural Ara h 6: Evidence for a further peanut allergen with putative clinical relevance based on resistance to pepsin digestion and heat. Mol Nutr Food Res 48:390–399CrossRefPubMedGoogle Scholar
  51. Viquez OM, Summer CG, Dodo HW (2001) Isolation and molecular characterization of the first genomic clone of a major peanut allergen, Ara h 2. J Allergy Clin Immunol 107:713–717CrossRefPubMedGoogle Scholar
  52. Wagner A (2000) Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. Proc Natl Acad Sci U S A 97:6579–6584CrossRefPubMedGoogle Scholar
  53. Yan YS, Lin XD, Zhang YS, Wang L, Wu K, Huang SZ (2005) Isolation of peanut genes encoding arachins and conglutins by expressed sequence tags. Plant Sci 169:439–445CrossRefGoogle Scholar
  54. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Laura Ramos
    • 1
  • Geraldine Fleming
    • 1
  • Ye Chu
    • 1
  • Yukio Akiyama
    • 1
  • Maria Gallo
    • 2
  • Peggy Ozias-Akins
    • 1
  1. 1.Department of HorticultureUniversity of Georgia Tifton CampusTiftonUSA
  2. 2.Agronomy Department, Plant Molecular and Cellular Biology Program, and The Genetics InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations