Molecular Genetics and Genomics

, Volume 275, Issue 5, pp 479–491

Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends

  • James E. FrelichowskiJr
  • Michael B. Palmer
  • Dorrie Main
  • Jeffrey P. Tomkins
  • Roy G. Cantrell
  • David M. Stelly
  • John Yu
  • Russell J. Kohel
  • Mauricio Ulloa
Original Paper

Abstract

Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala ‘Maxxa’, 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G.hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton.

Keywords

Simple sequence repeat (SSR) Bacterial artificial chromosome (BAC) BAC-end sequencing Genetic mapping Quantitative trait loci (QTL) Fine mapping Molecular tagging 

Supplementary material

438_2006_106_MOESM1_ESM.doc (270 kb)
Supplementary material

References

  1. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Anderson CG (1999) Cotton marketing. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology, and production. Wiley, New York, pp 659–679Google Scholar
  3. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage map. Genome 36:181–186Google Scholar
  4. Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929PubMedCrossRefGoogle Scholar
  5. Boissinot S, Entezam A, Young L, Munson PJ, Furano AV (2004) The insertional history of an active family of L1 retrotransposons in humans. Genome Res 14:1221–1231PubMedCrossRefGoogle Scholar
  6. Bolek Y, Kamal M El-Zik, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590CrossRefGoogle Scholar
  7. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  8. Brubaker CL, Paterson AH, Wendell JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203CrossRefGoogle Scholar
  9. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854PubMedGoogle Scholar
  10. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative traits mapping. Genetics 138:963–971PubMedGoogle Scholar
  11. De Kock MJD, Brandwagt BF, Bonnema G, de Wit PJGM, Lindhout P (2005) The tomato Orion locus comprises a unique class of Hcr9 genes. Mol Breed 15:409–422CrossRefGoogle Scholar
  12. Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165Google Scholar
  13. Gill KS, Bill BS, Endo TR, Taylor T (1996) Identification and high density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891PubMedGoogle Scholar
  14. Gonzalez J, Nefedov M, Bosdet I, Casals F, Calvete O, Delprat A, Shin H, Readman C, Mathewson C, Wye N, Hoskins RA, Schein JE, deJong P, Ruiz A (2005) A BAC-based physical map of the Drosophila buzzatii genome. Genome Res 15:885–892PubMedCrossRefGoogle Scholar
  15. Gregory SR, Hernandez E, Savoy BR (1999) Cottonseed processing. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology, and production. Wiley, New York, pp 793–823Google Scholar
  16. Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Current Sci 70:45–53Google Scholar
  17. Han Z, Guo W, Song X, Zhang T (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272:308–327PubMedCrossRefGoogle Scholar
  18. Hof JV, Saha S (1997) Cotton fibers can undergo cell division. Am J Bot 84(9):1231–1235CrossRefGoogle Scholar
  19. Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271:709–716PubMedCrossRefGoogle Scholar
  20. Islam-Faradi MN, Childs KL, Klein PE, Hodnett G, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM (2002) A molecular cytogenetic map of sorghum chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353Google Scholar
  21. Jiang C, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci 95:4419–4424PubMedCrossRefGoogle Scholar
  22. Kalendar R (2005) FastPCR: a PCR primer design and repeat sequence searching software with additional tools for the manipulation and analysis of DNA and protein (http://www.biocenter.helsinki.fi/bi/programs/fastpcr.htm)
  23. Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195PubMedCrossRefGoogle Scholar
  24. Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Phys 127:1361–1366CrossRefGoogle Scholar
  25. Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Molecular cytogenetic maps of Sorghum linkage groups 2 and 8. Genetics 169:955–965PubMedCrossRefGoogle Scholar
  26. Kohel RJ, Yu J, Park Y-H, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172CrossRefGoogle Scholar
  27. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  28. Lacape J-M, Nguyen T-B (2005) Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. J Hered 96(4):441–444PubMedCrossRefGoogle Scholar
  29. Lacape J-M, Nguyen T-B, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626PubMedCrossRefGoogle Scholar
  30. La Rota M, Kantety RV, Yu J-K, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellites markers in rice, wheat, and barley. BMC Genomics 6:23 (http://www.biomedcentral.com/1471-2164/6/23) DOI: 10.1186/1471-2164-6-23
  31. Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J McD (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124:180–187CrossRefGoogle Scholar
  32. Liu S, Saha S, Stelly D, Burr B, Cantrell RG (2000) Chromosomal assignment of microsatellite loci in cotton. J Hered 91:326–332PubMedCrossRefGoogle Scholar
  33. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869PubMedCrossRefGoogle Scholar
  34. Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990PubMedCrossRefGoogle Scholar
  35. Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291PubMedCrossRefGoogle Scholar
  36. Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutation limits microsatellite expansion in coding DNA. Genome Res 10:72–80PubMedGoogle Scholar
  37. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet 30:194–200PubMedCrossRefGoogle Scholar
  38. Nievergelt CM, Smith DW, Kohlenberg JB, Schork NJ (2004) Large-scale integration of human genetic and physical maps. Genome Res 14:1199–1205PubMedCrossRefGoogle Scholar
  39. Nguyen TB, Giband M, Brottier P, Risterucci A-M, Lacape J-M (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175PubMedCrossRefGoogle Scholar
  40. Palmer MB, Main D, Frelichowski JE, Tomkins JP, Ulloa M (2004) High-throughput development of new molecular markers for cotton. National Cotton Council Beltwide Cotton Conference p 1131Google Scholar
  41. Park Y-H, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Genet Genomics 274:428–441PubMedCrossRefGoogle Scholar
  42. Paterson AH (2002) What has QTL mapping taught us about plant domestication. New Phytol 154:591–608CrossRefGoogle Scholar
  43. Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology, and production. Wiley, New York, pp 33–63Google Scholar
  44. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369PubMedCrossRefGoogle Scholar
  45. Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123Google Scholar
  46. Reinisch A, Dong J-M, Brubaker C, Stelly D, Wendel J, Paterson AH (1994) A detailed RFLP map of cotton (Gossypium hirsutum × G. barbadense); chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  47. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417PubMedCrossRefGoogle Scholar
  48. Rong J, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ, Zhang H, Estill JC, Paterson AH (2005) Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res 15:1198–1210PubMedCrossRefGoogle Scholar
  49. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols, in the series methods in molecular biology. Humana Press, pp 365–386. Code available at http://www.fokker.wi.mit.edu/primer3/
  50. Saha S, Karaca M, Jenkins JN, Zipf AE, Reddy OUK, Kantety RV (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130:355–364CrossRefGoogle Scholar
  51. Shen X, Guo W, Zhu X, Yuan Y, Yu JZ, Kohel RJ, Zhang T (2005) Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers 15:169–181Google Scholar
  52. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachirii Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci 89:8794–8797PubMedCrossRefGoogle Scholar
  53. Song X, Wang K, Guo W, Zhang J, Zhang T (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome 48:378–390PubMedCrossRefGoogle Scholar
  54. Stam P, Van Ooijen JW (1995) JoinMap™ version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, WageningenGoogle Scholar
  55. Stelly DM (1993) Interfacing cytogenetics with the cotton genome mapping effort. In: Herber DJ, Richter DA (eds) Beltwide Cotton Conference, January 10–14, 1993, New Orleans, LA. Memphis, TN: National Cotton Council of America; pp 1545–1550Google Scholar
  56. Taliercio EW, Ulloa M (2003) The DNA sequence of a Gypsy element from Gossypium hirsutum L. and characterization of Gypsy elements in three Gossypium species. DNA sequence V 14(4):319–325CrossRefGoogle Scholar
  57. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roeder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  58. Tautz D, Schotterer C (1994) Simple sequences. Curr Opin Genet 4:832–837CrossRefGoogle Scholar
  59. Tomkins JP, Peterson DG, Yang TJ, Main D, Wilkins TA, Paterson AH, Wing RA (2001) Development of genomic resources for cotton (Gossypium hirsutum L.): BAC library construction, preliminary STC analysis, and identification of clones associated with fiber development. Mol Breed 8(3):255–261CrossRefGoogle Scholar
  60. Ulloa M, Meredith WR Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170Google Scholar
  61. Ulloa M, Meredith WR Jr, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from F2.3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208PubMedCrossRefGoogle Scholar
  62. Ulloa M, Stewart J McD, Garcia CE, Godoy AS, Gaytan-MA, Acosta-NS (2006) Cotton genetic resources in the western states of Mexico; In situ conservation status and germplasm collection for ex situ preservation. Genet Resour Crop Evol (in press). DOI 10.1007/s10722-004-2988-0Google Scholar
  63. Ulloa M, Saha S, Jenkins JN, Meredith WR, McCarty JC, Stelly MD (2005) Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Hered 96:132–144PubMedCrossRefGoogle Scholar
  64. Van Ooijen JW, Maliepaard C (1996) MapQTL™ Version 3.0, software for the calculation of QTL positions on genetic maps. Plant Research International, WageningenGoogle Scholar
  65. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  66. Wang S, Wang J-W, Yu N, Li C-H, Luo B, Gou J-Y, Wang L-J, Chen X-Y (2004) Control of plant trichome development by a cotton fiber MYB gene. The Plant Cell 16:2323–2334PubMedCrossRefGoogle Scholar
  67. Wang C, Ulloa M, Roberts PA (2005) Identification and mapping of microsatellite markers linked to the root-knot nematode resistance gene rkn1 in Acala NemX (Gossypium hirsutum L.). Theor Appl Genet (in press) DOI:10.1007/S00122-005-0183Google Scholar
  68. Wilkins TA, Arpat AB (2005) The cotton fiber transcriptome. Physiologia Plantarum 124:295–300CrossRefGoogle Scholar
  69. Yu, J, Kohel RJ, Xu Z, Dong J, Zhang H, Stelly DM, Zhu Y, Covaleda L (2005) Physical mapping of fiber development genes in cotton [abstract]. Plant And Animal Genome XIII Conference p 225Google Scholar
  70. Zaki EA, Ghany AAA (2004) Ty3/gypsy retro-transposons in Egyptian cotton (G. barbadense). J Cotton Sci 8:179–185Google Scholar
  71. Zhao X, Si Y, Sason RE, Crane CF, Price HJ, Stelly DM, Wendell JF, Paterson AH (1998) Dispersed repetitive DNA has spread to new genomes since polyploidy formation in cotton. Genome Res 8:479–492PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • James E. FrelichowskiJr
    • 1
  • Michael B. Palmer
    • 2
  • Dorrie Main
    • 2
  • Jeffrey P. Tomkins
    • 2
  • Roy G. Cantrell
    • 3
  • David M. Stelly
    • 4
  • John Yu
    • 5
  • Russell J. Kohel
    • 5
  • Mauricio Ulloa
    • 1
    • 6
  1. 1.USDA-ARS, W.I.C.S. Res. UnitCotton Enhancement ProgramShafterUSA
  2. 2.Department of Genetics and BiochemistryClemson UniversityClemsonUSA
  3. 3.Cotton IncorporatedCaryUSA
  4. 4.Texas A&M UniversityCollege StationUSA
  5. 5.USDA-ARSCollege StationUSA
  6. 6.ShafterUSA

Personalised recommendations