Molecular Genetics and Genomics

, Volume 274, Issue 1, pp 30–39 | Cite as

Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana

  • Alexander H. J. Wittenberg
  • Theo van der Lee
  • Cyril Cayla
  • Andrzej Kilian
  • Richard G. F. Visser
  • Henk J. Schouten
Original Paper

Abstract

Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F2 population obtained from a Col × Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.

Keywords

Microarray Genomic representation Genetic variation Linkage map Ecotypes Diversity Arrary Technology 

Supplementary material

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402Google Scholar
  2. Bhatt AM, Lister C, Crawford N, Dean C (1998) The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell 10:427–434Google Scholar
  3. Borevitz JO, Liang D, Plouffe D, Chang H-S, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523Google Scholar
  4. Broude NE, Zhang L, Woodward K, Englert D, Cantor CR (2000) Multiplex allele-specific target amplification based on PCR suppression. Proc Natl Acad Sci USA 98:206–211Google Scholar
  5. Buetow KH (1991) Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet 5:985–994Google Scholar
  6. Cervera MT, Ruiz-Garcia L, Martinez-Zarpater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Gen Genomics 268:543–552Google Scholar
  7. Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614Google Scholar
  8. Cutler DJ, Zwick ME, Carrasquillo MM, Yohn CT, Tobin KP, Kashuk C, Mathews DJ, Shah NA, Eichler EE, Warrington JA, Chakravarti A (2001) High-throughput variation detection and genotyping using microarrays. Genome Res 11:1913–1925Google Scholar
  9. Flavell AJ, Bolshakov VN, Booth A, Jing R, Russell J, Ellis TH, Isaac P (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucleic Acids Res 31:e115Google Scholar
  10. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25Google Scholar
  11. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450Google Scholar
  12. Jenkins S, Gibson N (2002) High-throughput SNP genotyping. Comp Funct Genom 3:57–66Google Scholar
  13. Ji M, Hou P, Li S, He N, Lu Z (2004) Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization. Mutat Res 548:97–105Google Scholar
  14. Knox MR, Ellis TH (2001) Stability and inheritance of methylation states at PstI sites in Pisum. Mol Gen Genom 265:497–507Google Scholar
  15. Kwok PY (2000) High-throughput genotyping assay approaches. Pharmacogenomics 1:95–100Google Scholar
  16. Li TX, Wang J, Bai Y, Sun X, Lu Z (2004) A novel method for screening species-specific gDNA probes for species identification. Nucleic Acids Res 32:e45Google Scholar
  17. Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 3:604–610Google Scholar
  18. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Genet 4:981–994Google Scholar
  19. Lukowitz W, Gillmor CS, Scheible WR (2000) Positional cloning in Arabidopsis why it feels good to have a genome initiative working for you. Plant Physiol 132:795–805Google Scholar
  20. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koorneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282:662–681Google Scholar
  21. Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770Google Scholar
  22. Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L, Syvanen AC (2000) A system for specific, high throughput genotyping by allele-specific primer extension on microarrays. Genome Res 10:1031–1042Google Scholar
  23. Pereira A, Aarts MGM (1998) Transposon tagging with the En-I system. In: Martinez-Zapater J, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, NJ, pp 329–338Google Scholar
  24. Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491Google Scholar
  25. Rhee SY et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228Google Scholar
  26. Sachidanandam R et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933Google Scholar
  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NewYorkGoogle Scholar
  28. Schmid KJ, Rosleff Sörensen T, Stracke R, Törjék O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257Google Scholar
  29. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088Google Scholar
  30. Syvanen AC (1999) From gels to chips: ‘minisequencing’ primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1–10Google Scholar
  31. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  32. Törjék O, Berger D, Meyer RC, Müssig C, Schmid KJ, Sörensen TR, Weisshaar B, Mitchell-Olds T, Altman T (2003) Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis. Plant J 36:122–140Google Scholar
  33. Van Eijk MJT, Broekhof JLN, van der Poel HJA, Hogers RCJ, Schneiders H, Kamerbeek J, Verstege E, van Aart JW, Geerlings H, Buntjer JB, van Oeveren AJ, Vos P (2003) SNPWave: a flexible multiplexed SNP genotyping technology. Nucleic Acids Res 32:e47Google Scholar
  34. Van der Linden CG, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393Google Scholar
  35. Van der Wurff AWG, Chan YL, van Straalen NM, Schouten J (2000) TE-AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Res 28:e105Google Scholar
  36. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78Google Scholar
  37. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuipers M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414Google Scholar
  38. Voytas DF, Konieczny A, Cummings MP, Ausubel FM (1990) The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics 126:713–721Google Scholar
  39. Wang DG et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082Google Scholar
  40. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920Google Scholar
  41. Winzeler EA, Castillio-Davis CI, Oshiro G, Liang D, Richards DR, Zhou Y, Hartl DL (2003) Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics 163:79–89Google Scholar

Copyright information

©  2005

Authors and Affiliations

  • Alexander H. J. Wittenberg
    • 1
    • 2
  • Theo van der Lee
    • 2
  • Cyril Cayla
    • 3
  • Andrzej Kilian
    • 3
    • 4
  • Richard G. F. Visser
    • 1
  • Henk J. Schouten
    • 2
  1. 1.Department of Plant Sciences, Laboratory of Plant Breeding, The Graduate School Experimental Plant SciencesWageningen University and Research CentreAJ WageningenThe Netherlands
  2. 2.Plant Research InternationalWageningen University and Research CentreAA WageningenThe Netherlands
  3. 3.Diversity Arrays Technology Pty. LtdCanberraAustralia
  4. 4.Center for the Application of Molecular Biology to International AgricultureCanberraAustralia

Personalised recommendations