Molecular Genetics and Genomics

, Volume 273, Issue 2, pp 184–196 | Cite as

Peutz–Jeghers LKB1 mutants fail to activate GSK-3β, preventing it from inhibiting Wnt signaling

  • Nathalie Lin-Marq
  • Christelle Borel
  • Stylianos E. AntonarakisEmail author
Original Paper


Peutz–Jeghers syndrome (PJS) is caused by germline mutations in the LKB1 gene, which encodes a serine-threonine kinase that regulates cell proliferation and polarity. This autosomal dominant disorder is characterized by mucocutaneous melanin pigmentation, multiple gastrointestinal hamartomatous polyposis and an increased risk of developing various neoplasms. To understand the molecular pathogenesis of PJS phenotypes, we used microarrays to analyze gene expression profiles in proliferating HeLa cells transduced with lentiviral vectors expressing wild type or mutant LKB1 proteins. We show that gene expression is differentially affected by mutations that impair the kinase activity (K78I) or alter the cellular localization of the LKB1 protein. However, both mutations abrogate the ability of LKB1 to up-regulate the transcription of several genes involved in Wnt signaling, including DKK3, WNT5B and FZD2. In addition—and in contrast to the wild type protein—these LKB1 mutants fail to activate the GSK-3β kinase, which otherwise phosphorylates β-catenin. The increase in β-catenin phosphorylation that occurs upon expression of wild-type LKB1 results in transcriptional inhibition of a canonical Wnt reporter gene. This suggests that pathogenic LKB1 mutations that lead to activation of the Wnt/β-catenin pathway could contribute to the cancer predisposition of PJS patients.


Peutz–Jeghers syndrome (PJS) LKB1 Wnt signaling β-Catenin 



We thank Dr. P. Descombes, Dr. M. Docquier, Dr. D. Chollet and Dr. O. Schaad, members of the NCCR genomic platform of the University of Geneva, for assistance in microarray and real-time RT-PCR analysis; Dr. C. Chaponnier (University of Geneva, Switzerland) for her kind gift of TAGLN antibodies, Dr. M. Neerman-Arbez, Dr. A. Reymond and Dr. R. Lyle for their critical reading of the manuscript; Dr. R. Moon for the gift of TOPflash/FOPflash vectors. N.L.M was supported by the Swiss National Science Foundation and the S.E.A laboratory was supported by grants from the Swiss Cancer League.

Supplementary material

438_2005_1124_ESM_supp.pdf (301 kb)
(PDF 302 KB)


  1. Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M, Miura K, Harris CC (2003) Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63:728–734PubMedGoogle Scholar
  2. Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, Alessi DR, Clevers HC (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22:3062–3072CrossRefPubMedGoogle Scholar
  3. Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC (2004a) Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116:457–466Google Scholar
  4. Baas AF, Smit L, Clevers H (2004b) LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends Cell Biol 14:312–319Google Scholar
  5. Back W, Loff S, Jenne D, Bleyl U (1999) Immunolocalization of beta catenin in intestinal polyps of Peutz–Jeghers and juvenile polyposis syndromes. J Clin Pathol 52:345–349Google Scholar
  6. Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3:683–686Google Scholar
  7. Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE, Loda M, Carrasco DR, DePinho RA (2002) Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419:162–167Google Scholar
  8. Blumer JB, Bernard ML, Peterson YK, Nezu J, Chung P, Dunican DJ, Knoblich JA, Lanier SM (2003) Interaction of AGS3 with LKB1, a serine-threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the GPR-motif as a regulatory mechanism for the interaction of GPR motifs with Gialpha. J Biol Chem 278:23217–23220Google Scholar
  9. Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, Ahlquist DA, Podratz KC, Pittelkow M, Hartmann LC (1998) Increased risk for cancer in patients with the Peutz–Jeghers syndrome. Ann Intern Med 128:896–899Google Scholar
  10. Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, Prescott AR, Clevers HC, Alessi DR (2003a) MO25alpha/beta interact with STRADalpha/beta, enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22:5102–5114CrossRefPubMedGoogle Scholar
  11. Boudeau J, Kieloch A, Alessi DR, Stella A, Guanti G, Resta N (2003b) Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz–Jeghers syndrome patients. Hum Mutat 21:172Google Scholar
  12. Boudeau J, Sapkota G, Alessi DR (2003c) LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett 546:159–165Google Scholar
  13. Caricasole A, Ferraro T, Iacovelli L, Barletta E, Caruso A, Melchiorri D, Terstappen GC, Nicoletti F (2003) Functional characterization of WNT7A signaling in PC12 cells: interaction with a FZD5 × LRP6 receptor complex and modulation by Dickkopf proteins. J Biol Chem 278:37024–37031Google Scholar
  14. Carretero J, Medina PP, Pio R, Montuenga LM, Sanchez-Cespedes M (2004) Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 23:4037–4040Google Scholar
  15. Collins SP, Reoma JL, Gamm DM, Uhler MD (2000) LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345:673–680Google Scholar
  16. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz–Jeghers syndrome. Genes Dev 18:1533–1538Google Scholar
  17. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100Google Scholar
  18. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186Google Scholar
  19. Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421:753–756CrossRefPubMedGoogle Scholar
  20. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, Cruz-Correa M, Offerhaus JA (2000) Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology 119:1447–1453Google Scholar
  21. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24Google Scholar
  22. Harwood AJ (2001) Regulation of GSK-3: a cellular multiprocessor. Cell 105:821–824Google Scholar
  23. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28Google Scholar
  24. Hemminki A et al (1998) A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391:184–187Google Scholar
  25. Hemminki A, Tomlinson I, Markie D, Jarvinen H, Sistonen P, Bjorkqvist AM, Knuutila S, Salovaara R, Bodmer W, Shibata D, de la Chapelle A, Aaltonen LA (1997) Localization of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet 15:87–90Google Scholar
  26. Hong SP, Leiper FC, Woods A, Carling D, Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100:8839–8843Google Scholar
  27. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18:1585–1592Google Scholar
  28. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W, Zimmer M (1998) Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18:38–43Google Scholar
  29. Jimenez AI, Fernandez P, Dominguez O, Dopazo A, Sanchez-Cespedes M (2003) Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3′-phosphate kinase/PTEN pathway. Cancer Res 63:1382–1388Google Scholar
  30. Jishage K, Nezu J, Kawase Y, Iwata T, Watanabe M, Miyoshi A, Ose A, Habu K, Kake T, Kamada N, Ueda O, Kinoshita M, Jenne DE, Shimane M, Suzuki H (2002) Role of Lkb1, the causative gene of Peutz-Jegher’s syndrome, in embryogenesis and polyposis. Proc Natl Acad Sci USA 99:8903–8908Google Scholar
  31. Kalinichenko VV, Zhou Y, Bhattacharyya D, Kim W, Shin B, Bambal K, Costa RH (2002) Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem 277:12369–12374Google Scholar
  32. Karuman P, Gozani O, Odze RD, Zhou XC, Zhu H, Shaw R, Brien TP, Bozzuto CD, Ooi D, Cantley LC, Yuan J (2001) The Peutz–Jeghers gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7:1307–1319Google Scholar
  33. Kershaw DB, Beck SG, Wharram BL, Wiggins JE, Goyal M, Thomas PE, Wiggins RC (1997) Molecular cloning and characterization of human podocalyxin-like protein. Orthologous relationship to rabbit PCLP1 and rat podocalyxin. J Biol Chem 272:15708–15714Google Scholar
  34. Lee WH, Wang GM, Yang XL, Seaman LB, Vannucci SI (1999) Perinatal hypoxia-ischemia decreased neuronal but increased cerebral vascular endothelial IGFBP3 expression. Endocrine 11:181–188Google Scholar
  35. Li QL et al (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124Google Scholar
  36. Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, Smeekens SP (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18:1593–1599Google Scholar
  37. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36:178–182Google Scholar
  38. Marignani PA, Kanai F, Carpenter CL (2001) LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest. J Biol Chem 276:32415–32418Google Scholar
  39. Martin SG, St Johnston D (2003) A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421:379–384Google Scholar
  40. Mehenni H, Gehrig C, Nezu J, Oku A, Shimane M, Rossier C, Guex N, Blouin JL, Scott HS, Antonarakis SE (1998) Loss of LKB1 kinase activity in Peutz–Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet 63:1641–1650Google Scholar
  41. Miller JR (2002) The Wnts. Genome Biol 3:REVIEWS3001Google Scholar
  42. Miller JR, Hocking AM, Brown JD, Moon RT (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872CrossRefPubMedGoogle Scholar
  43. Miyaki M, Iijima T, Hosono K, Ishii R, Yasuno M, Mori T, Toi M, Hishima T, Shitara N, Tamura K, Utsunomiya J, Kobayashi N, Kuroki T, Iwama T (2000) Somatic mutations of LKB1 and beta-catenin genes in gastrointestinal polyps from patients with Peutz–Jeghers syndrome. Cancer Res 60:6311–6313Google Scholar
  44. Miyoshi H, Nakau M, Ishikawa TO, Seldin MF, Oshima M, Taketo MM (2002) Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res 62:2261–2266Google Scholar
  45. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267Google Scholar
  46. Nezu J, Oku A, Shimane M (1999) Loss of cytoplasmic retention ability of mutant LKB1 found in Peutz–Jeghers syndrome patients. Biochem Biophys Res Commun 261:750–755Google Scholar
  47. Ossipova O, Bardeesy N, DePinho RA, Green JB (2003) LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat Cell Biol 5:889–894Google Scholar
  48. Perr HA, Ye J, Gitelman SE (1999) Smooth muscle expresses bone morphogenetic protein (Vgr-1/BMP-6) in human fetal intestine. Biol Neonate 75:210–214Google Scholar
  49. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713Google Scholar
  50. Rossi DJ, Ylikorkala A, Korsisaari N, Salovaara R, Luukko K, Launonen V, Henkemeyer M, Ristimaki A, Aaltonen LA, Makela TP (2002) Induction of cyclooxygenase-2 in a mouse model of Peutz–Jeghers polyposis. Proc Natl Acad Sci USA 99:12327–12332Google Scholar
  51. Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D (2000) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96:3392–3398Google Scholar
  52. Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR, Morrice N, Deak M, Alessi DR (2001) Phosphorylation of the protein kinase mutated in Peutz–Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell growth. J Biol Chem 276:19469–19482Google Scholar
  53. Sapkota GP, Deak M, Kieloch A, Morrice N, Goodarzi AA, Smythe C, Shiloh Y, Lees-Miller SP, Alessi DR (2002) Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J 368:507–516Google Scholar
  54. Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Luttges J, Kloppel G, Graeven U, Eilert-Micus C, Hintelmann A, Schmiegel W (2000) Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 97:9624–9629Google Scholar
  55. Smith DP, Spicer J, Smith A, Swift S, Ashworth A (1999) The mouse Peutz–Jeghers syndrome gene Lkb1 encodes a nuclear protein kinase. Hum Mol Genet 8:1479–1485Google Scholar
  56. Smith DP, Rayter SI, Niederlander C, Spicer J, Jones CM, Ashworth A (2001) LIP1, a cytoplasmic protein functionally linked to the Peutz–Jeghers syndrome kinase LKB1. Hum Mol Genet 10:2869–2877Google Scholar
  57. Spicer D, Branton PE (1980) Reduction of cell surface fibronectin (LETS protein) correlates with tumorigenicity of hamster fibroblasts transformed by herpes simplex virus type 2. Intervirology 13:58–64Google Scholar
  58. Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D (2003) Regulation of the Wnt signalling component PAR1A by the Peutz–Jeghers syndrome kinase LKB1. Oncogene 22:4752–4756Google Scholar
  59. Su JY, Erikson E, Maller JL (1996) Cloning and characterization of a novel serine/threonine protein kinase expressed in early Xenopus embryos. J Biol Chem 271:14430–14437Google Scholar
  60. Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, Hardie DG (2003) Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol 13:1299–1305Google Scholar
  61. Tiainen M, Ylikorkala A, Makela TP (1999) Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci USA 96:9248–9251Google Scholar
  62. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034Google Scholar
  63. Watts JL, Morton DG, Bestman J, Kemphues KJ (2000) The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 127:1467–1475Google Scholar
  64. Wei C, Amos CI, Rashid A, Sabripour M, Nations L, McGarrity TJ, Frazier ML (2003) Correlation of staining for LKB1 and COX-2 in hamartomatous polyps and carcinomas from patients with Peutz–Jeghers Syndrome. J Histochem Cytochem 51:1665–1672Google Scholar
  65. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008Google Scholar
  66. Ylikorkala A et al (1999) Mutations and impaired function of LKB1 in familial and non-familial Peutz–Jeghers syndrome and a sporadic testicular cancer. Human Mol Genet 8:45–51Google Scholar
  67. Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, Makela TP (2001) Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293:1323–1326Google Scholar
  68. Yoo LI, Chung DC, Yuan J (2002) LKB1—a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer 2:529–535Google Scholar
  69. Zhang JC, Kim S, Helmke BP, Yu WW, Du KL, Lu MM, Strobeck M, Yu Q, Parmacek MS (2001) Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function. Mol Cell Biol 21:1336–1344Google Scholar
  70. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Nathalie Lin-Marq
    • 1
  • Christelle Borel
    • 1
  • Stylianos E. Antonarakis
    • 1
    Email author
  1. 1.Department of Genetics Medicine and DevelopmentUniversity of Geneva Medical SchoolGeneve 4Switzerland

Personalised recommendations