Molecular Genetics and Genomics

, Volume 273, Issue 3, pp 264–272 | Cite as

The Elp3 subunit of human Elongator complex is functionally similar to its counterpart in yeast

  • Fen Li
  • Jun Lu
  • Qiuju Han
  • Guoping Zhang
  • Baiqu Huang
Original Paper

Abstract

Functions of the Elp3 subunit of the recently purified human Elongator were studied using an in vivo yeast complementation system. We demonstrated that the human ELP3 gene (hELP3) was able partially to complement functional defects of yeast elp3Δ cells. Furthermore, a chimeric ELP3 gene (yhELP3) encoding a protein in which the putative histone acetyltransferase (HAT) domain of hELP3 fused to the remainder of the yeast Elp3p corrected the growth defects of elp3Δ cells and complemented the slow activation of some inducible genes. Moreover, deletion of the B motif of the catalytic domain of the HAT region of hELP3 eliminated the ability of yhELP3 to complement elp3Δ in vivo, indicating that the HAT activity is essential for ELP3 function. We also demonstrated that replacement of specific lysine residues in histones H3 and H4 by arginine affected the complementation capacity of both the yeast gene (yELP3) and the chimeric yhELP3 in the elp3Δstrain. Specifically, mutation of lysine-14 of H3 (H3 K14R) or lysine-8 of H4 (H4 K8R) reduced the ability of yELP3 and yhELP3 to complement the elp3Δ mutant, whereas simultaneous mutation of both sites (H3 K14R/H4 K8R) almost completely abolished complementation. These results imply a link between the acetylation of specific sites in nucleosomal histones and the regulation of transcription elongation by human Elp3. The data presented in this report suggest that the Elp3 subunits of human and yeast are highly conserved in their structure and functions.

Keywords

Human Elp3 Elongator complex Histone acetyltransferase (HAT) Yeast complementation Histone modification 

Notes

Acknowledgements

We thank Professor J. Q. Svejstrup for providing yeast strains (W303, JSY130, and JSY316) and plasmid pYES2 containing hELP3-coding sequence. This study was funded by grants from the National Basic Research Program of China (Grant No. G1999053902) and the National Natural Science Foundation of China (Grant No. 30370316). Fen Li and Jun Lu contributed equally to this work.

References

  1. Chinenov Y (2002) A second catalytic domain in the Elp3 histone acetyltransferases: a candidate for histone demethylase activity? Trends Biochem Sci 21:115–117Google Scholar
  2. Fellows J, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2000) The Elp2 subunit of Elongator and Elongating RNA polymerase II holoenzyme is a WD40 repeat protein. J Biol Chem 275:12896–12899Google Scholar
  3. Frohloff F, Fichtner L, Jablonowski D, Breunig KD, Schaffrath R (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20:1993–2003Google Scholar
  4. Germaniuk A, Liberek K, Marszalek J (2002) A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J Biol Chem 277:27801–27808Google Scholar
  5. Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL (1997) Yeast GCN5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an ADA complex and the SAGA (SPT/ADA) complex. Genes Dev 11:1640–1650Google Scholar
  6. Grunstein M (1990) Nucleosomes: regulators of transcription. Trends Genet 6:395–400Google Scholar
  7. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352Google Scholar
  8. Han M, Grunstein M (1988) Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145Google Scholar
  9. Han M, Kim UJ, Kayne P, Grunstein M (1988) Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J 7:2221–2228Google Scholar
  10. Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Claire L, Schiavo TG, Hediye EB, Tempst P, Svejstrup JQ (2002) Purification and characterization of the human Elongator complex. J Biol Chem 277:3047–3052Google Scholar
  11. Hill J, Donald IG, Griffiths DE, Donald G (1991) DMSO-enhanced yeast transformation. Nucleic Acids Res 19:5791Google Scholar
  12. Hirata Y, Andoh T, Asahara T, Kikuchi A (2003) Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress-responsive genes. Mol Biol Cell 14:302–312Google Scholar
  13. Jablonowski D, Frohloff F, Fichtner L, Stark MJR, Schaffrath R (2001) Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase II function via Elongator. Mol Microbiol 42:1095–1105Google Scholar
  14. Johnson CA, O’Neill LP, Mitchell A, Turner BM (1998) Distinctive patterns of histone acetylation are associated with defined sequence elements within heterochromatic and euchromatic regions of the human genome. Nucleic Acids Res 26:994–1001Google Scholar
  15. Kim JH, Lane WS, Reinberg D (2002) Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc Natl Acad Sci USA 99:1241–1246Google Scholar
  16. Krogan NJ, Greenblatt JF (2001) Characterization of a six-subunit holoelongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 21:8203–8212Google Scholar
  17. Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD (1996) Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383:269–272Google Scholar
  18. Li Y, Takagi Y, Jiang Y, Tokunaga M, Erdjument-Bromage H, Tempst P, Kornberg RD (2001) A multiprotein complex that interacts with RNA polymerase II elongator. J Biol Chem 276:29628–29631Google Scholar
  19. Lzban MG, Luse DS (1991) Transcription on nuclleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev 5:683–696Google Scholar
  20. Nicholson R, Williams DB, Moran LA (1990) An essential member of the HSP70 gene family of Saccharomyces cerevisiae is homologous to immunoglobulin heavy chain binding protein. Proc Natl Acad Sci USA 86:1159–1163Google Scholar
  21. Otero G, Fellows J, Li Y, de Bizemont T, Dirac AMG, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3:109–118Google Scholar
  22. Pokholok DK, Hannett NM, Young RA (2002) Exchange of RNA polymerase II-initiation and elongation factors during gene expression in vivo. Mol Cell 9:799–809Google Scholar
  23. Protacio RU, Li G, Lowary PT, Widom J (2000) Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol Cell Biol 20:8866–8878Google Scholar
  24. Roth SY (1995) Chromatin-mediated transcriptional repression in yeast. Curr Opin Genet Dev 5:168–173Google Scholar
  25. Roth SY, Allis CD (1996) Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87:5–8Google Scholar
  26. Smith MM (1991) Histone structure and function. Curr Opin Cell Biol 3:429–437Google Scholar
  27. Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92:1237–1241Google Scholar
  28. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45Google Scholar
  29. Svejstrup JQ (2002) Chromatin elongation factors. Curr Opin Genet Dev 12:156–161Google Scholar
  30. Travis GH, Colavito-Shepanski M, Grunstein M (1984) Extensive purification and characterization of chromatin-bound histone acetyltransferase from Saccharomyces cerevisiae. J Biol Chem 259:14406–14412Google Scholar
  31. Trotter EW, Kao CM, Berenfeld L, Botstein D, Petsko GA, Gray JV (2002) Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 277:44817–44825Google Scholar
  32. Turner BM (1991) Histone acetylation and control of gene expression. J Cell Sci 99:13–20Google Scholar
  33. Turner BM (1993) Decoding the nucleosome. Cell 75:5–8Google Scholar
  34. Wasylyk B, Chambon P (1979) Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro. Eur J Biochem 98:317–327Google Scholar
  35. Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2001) RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276:32743–32749Google Scholar
  36. Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci USA 99:3517–3522Google Scholar
  37. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4:123–128Google Scholar
  38. Wittschieben BO, Fellows J, Du W, Stillman DJ, Svejstrup JQ (2000) Overlapping roles for the histone acetyltransferase activities of SAGA and Elongator in vivo. EMBO J 19:3060–3068Google Scholar
  39. Zhang W, Bone JR, Edmondson DG, Turner BM, Roth SY (1998) Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J 17:3155–3167Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Fen Li
    • 1
    • 2
  • Jun Lu
    • 1
  • Qiuju Han
    • 1
  • Guoping Zhang
    • 1
  • Baiqu Huang
    • 1
  1. 1.Institute of Genetics and CytologyNortheast Normal UniversityPR China
  2. 2.College of Life ScienceHenan Normal UniversityPR China

Personalised recommendations