Molecular Genetics and Genomics

, Volume 273, Issue 1, pp 20–32 | Cite as

Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements

  • Rays H. Y. Jiang
  • Angus L. Dawe
  • Rob Weide
  • Marjo van Staveren
  • Sander Peters
  • Donald L. Nuss
  • Francine GoversEmail author
Original Paper


Sequencing and annotation of a contiguous stretch of genomic DNA (112.3 kb) from the oomycete plant pathogen Phytophthora infestans revealed the order, spacing and genomic context of four members of the elicitin (inf) gene family. Analysis of the GC content at the third codon position (GC3) of six genes encoded in the region, and a set of randomly selected coding regions as well as random genomic regions, showed that a high GC3 value is a general feature of Phytophthora genes that can be exploited to optimize gene prediction programs for Phytophthora species. At least one-third of the annotated 112.3-kb P. infestans sequence consisted of transposons or transposon-like elements. The most prominent were four Tc3/gypsy and Tc1/copia type retrotransposons and three DNA transposons that belong to the Tc1/mariner, Pogo and PiggyBac groups, respectively. Comparative analysis of other available genomic sequences suggests that transposable elements are highly heterogeneous and ubiquitous in the P. infestans genome.


Class I element Class II element Late blight CHROMO domain 



We are grateful to Sharmili Mathur for expert technical assistance, Steve Whisson for providing the BAC library and filters, Grardy van den Berg for screening the BAC library, and Pierre de Wit for critically reading the manuscript. This work was financially supported by NWO-Aspasia Grant No. 015.000.057 and USDA Cooperative Agreement No. 58-8230-6-081. The authors acknowledge Syngenta for access to the Syngenta Phytophthora Consortium EST Database, and the Broad Institute and the DOE Joint Genome Institute for depositing random genomic sequences of P. infestans and P. sojae, respectively, in the NCBI trace file archive

Supplementary material

Table S1 Codon usage and 3rd position GC frequency in 79 Phytophthora infestans genes

438_2005_1114_ESM_supp.pdf (101 kb)
(PDF 101 KB)


  1. Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23:3168–3173Google Scholar
  2. Ah Fong AM, Judelson HS (2004) The hAT-like DNA transposon DodoPi resides in a cluster of retro- and DNA transposons in the stramenopile Phytophthora infestans. Mol Genet Genomics 271:577–585CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706CrossRefGoogle Scholar
  5. Baltimore D (1985) Retroviruses and retrotransposons—the role of reverse transcription in shaping the eukaryotic genome. Cell 40:481–482CrossRefGoogle Scholar
  6. Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer ELL (1999) Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 27:260–262CrossRefGoogle Scholar
  7. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL (2000) The Pfam protein families database. Nucleic Acids Res 28:263–266CrossRefGoogle Scholar
  8. Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434CrossRefGoogle Scholar
  9. Bonfield JK, Smith K, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999Google Scholar
  10. Cavalli G, Paro R (1998) Chromo-domain proteins: linking chromatin structure to epigenetic regulation. Curr Opin Cell Biol 10:354–360CrossRefGoogle Scholar
  11. Daboussi MJ, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299CrossRefGoogle Scholar
  12. Duclos J, Fauconnier A, Coelho AC, Bollen A, Cravador A, Godfroid E (1998) Identification of an elicitin gene cluster in Phytophthora cinnamomi. DNA Seq 9:231–237Google Scholar
  13. Echalier G (1989) Drosophila retrotransposons—interactions with genome. Adv Virus Res 36:33–105Google Scholar
  14. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. The American Phytopathological Society, St. Paul, Minn.Google Scholar
  15. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nature Rev Genetics 3:329–341Google Scholar
  16. Flavell AJ, Smith DB, Kumar A (1992) Extreme heterogeneity of Ty1-Copia group retrotransposons in plants. Mol Gen Genetics 231:233–242Google Scholar
  17. Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623Google Scholar
  18. Hendrix JW, Guttman SM (1970) Sterol or calcium requirement by Phytophthora parasitica var. nicotianae for growth on nitrate. Mycologia 62:195–198Google Scholar
  19. Hraber PT, Weller JW (2001) On the species of origin: diagnosing the source of symbiotic transcripts. Genome Biol 2:37CrossRefGoogle Scholar
  20. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405CrossRefPubMedGoogle Scholar
  21. Judelson HS (2002) Sequence variation and genomic amplification of a family of Gypsy-like elements in the oomycete genus Phytophthora. Mol Biol Evol 19:1313–1322Google Scholar
  22. Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2:191–199CrossRefGoogle Scholar
  23. Kamoun S, Styer A (2000) An improved codon usage table for Phytophthora infestans.
  24. Kamoun S, van West P, de Jong AJ, de Groot KE, Vleeshouwers VGAA, Govers F (1997) A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Mol Plant Microbe Interact 10:13–20Google Scholar
  25. Kamoun S, van West P, Vleeshouwers VGAA, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of elicitor protein INF1. Plant Cell 10:1413–1426CrossRefGoogle Scholar
  26. Kamoun S, Hraber P, Sobral B, Nuss D, Govers F (1999) Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol 28:94–106CrossRefPubMedGoogle Scholar
  27. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478Google Scholar
  28. Koonin EV, Zhou S, Lucchesi JC (1995) The chromo superfamily: new members, duplication of the chromo domain and possible role in delivering transcription regulators to chromatin. Nucleic Acids Res 23:4229–4233Google Scholar
  29. Kroon LP, Bakker FT, Van Den Bosch GB, Bonants PJ, Flier WG (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet Biol 41:766–782CrossRefGoogle Scholar
  30. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532CrossRefPubMedGoogle Scholar
  31. Kumar S, Tamura K, Nei M (1994) MEGA—Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci 10:189–191PubMedGoogle Scholar
  32. Latijnhouwers M, de Wit PJGM, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11:462–469CrossRefGoogle Scholar
  33. McLeod A, Smart CD, Fry WE (2004) Core promoter structure in the oomycete Phytophthora infestans. Eukaryot Cell 3:91–99CrossRefGoogle Scholar
  34. Mikes V, Milat ML, Ponchet M, Panabieres F, Ricci P, Blein JP (1998) Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem Biophys Res Commun 245:133–139CrossRefGoogle Scholar
  35. Noma K, Ohtsubo E, Ohtsubo H (1999) Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol Gen Genet 261:71–79CrossRefGoogle Scholar
  36. O’Neill K, Zody MC, Karlsson E, Govers F, van der Vondervoort P, Weide R, Whisson S, Birch P, Ma L, Birren B, Fry W, Judelson H, Kamoun S, Nusbaum C (2004) Sequencing the Phytophthora infestans genome: preliminary studies. Abstracts of the Annual Meeting of the NSF Phytophthora Molecular Genetics Network. New Orleans, May 21–23, 2004, p. 5Google Scholar
  37. Panabieres F, Marais A, LeBerre JY, Penot I, Fournier D, Ricci P (1995) Characterization of a gene cluster of Phytophthora cryptogea which codes for elicitins, proteins inducing a hypersensitive-like response in tobacco. Mol Plant Microbe Interact 8:996–1003Google Scholar
  38. Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88:263–267Google Scholar
  39. Pieterse CMJ, Van West P, Verbakel HM, Brasse P, Van den Berg-Velthuis GCM, Govers F (1994) Structure and Genomic Organization of the ipib and ipio gene clusters of Phytophthora infestans. Gene 138:67–77CrossRefGoogle Scholar
  40. Plasterk RH (1996) The Tc1/mariner transposon family. Curr Top Microbiol Immunol 204:125–143Google Scholar
  41. Qutob D, Hraber PT, Sobral BWS, Gijzen M (2000) Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol 123:243–253CrossRefPubMedGoogle Scholar
  42. Randall TA et al (2004) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact, in pressGoogle Scholar
  43. Ricci P, Trentin F, Bonnet P, Venard P, Moutonperronnet F, Bruneteau M (1992) Differential production of parasiticein, an elicitor of necrosis and resistance in tobacco, by isolates of Phytophthora Parasitica. Plant Pathol 41:298–307Google Scholar
  44. Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, Collins FH (2003) Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol Genet Genomics 270:173–180CrossRefGoogle Scholar
  45. Schmidt T (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol Biol 40:903–910CrossRefGoogle Scholar
  46. Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10:577–586CrossRefPubMedGoogle Scholar
  47. Skalamera D, Wasson AP, Hardham AR (2004) Genes expressed in zoospores of Phytophthora nicotianae. Mol Genet Genomics 270:549–557CrossRefGoogle Scholar
  48. Smit AF, Riggs AD (1996) Tiggers and DNA transposon fossils in the human genome. Proc Natl Acad Sci USA 93:1443–1448CrossRefGoogle Scholar
  49. Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ (2002) Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant Microbe Interact 15:421–427PubMedGoogle Scholar
  50. Tooley PW, Garfinkel DJ (1996) Presence of Ty1-copia group retrotransposon sequences in the potato late blight pathogen Phytophthora infestans. Mol Plant Microbe Interact 9:305–309Google Scholar
  51. Tudor M, Lobocka M, Goodell M, Pettitt J, O’Hare K (1992) The pogo transposable element family of Drosophila melanogaster. Mol Gen Genet 232:126–134CrossRefGoogle Scholar
  52. Whisson SC, van der Lee T, Bryan GJ, Waugh R, Govers F, Birch PRJ (2001) Physical mapping across an avirulence locus of Phytophthora infestans using a highly representative, large-insert bacterial artificial chromosome library. Mol Genet Genomics 266:289–295CrossRefGoogle Scholar
  53. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse-transcriptase sequences. EMBO J 9:3353–3362PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Rays H. Y. Jiang
    • 1
  • Angus L. Dawe
    • 2
  • Rob Weide
    • 1
  • Marjo van Staveren
    • 3
  • Sander Peters
    • 3
  • Donald L. Nuss
    • 4
  • Francine Govers
    • 1
    Email author
  1. 1.Plant Sciences Group, Laboratory of Phytopathology, Graduate School of Experimental Plant SciencesWageningen UniversityWageningenThe Netherlands
  2. 2.Biology DepartmentNew Mexico State UniversityLas CrucesUSA
  3. 3.GreenomicsPlant Research InternationalWageningenThe Netherlands
  4. 4.Center for Biosystems Research, University of Maryland Biotechnology InstituteUSA

Personalised recommendations