Molecular Genetics and Genomics

, Volume 275, Issue 2, pp 148–158 | Cite as

Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase

  • Kazuyuki Ojima
  • Jürgen Breitenbach
  • Hans Visser
  • Yutaka Setoguchi
  • Kazuyuki Tabata
  • Tatsuo Hoshino
  • Johan van den Berg
  • Gerhard SandmannEmail author
Original Paper


A gene has been cloned from Xanthophyllomyces dendrorhous by complementation of astaxanthin formation in a β-carotene accumulating mutant. It consists of 3,166 bp and contains 17 introns. For the β-carotene mutant ATCC 96815, a single point mutation in the splicing sequence of intron 8 was found. The resulting improper splicing of the mRNA results in an inactive protein. The cDNA of this β-carotene oxygenase encodes a cytochrome P450 monooxygenase belonging to the 3A subfamily. P450-specific domains were identified including a cytochrome P450 and an oxygen binding motif. Electrons are provided by a cytochrome P450 reductase. Functional characterization of the enzyme by genetic modification of X. dendrorhous demonstrated that this P450 monooxygenase is multifunctional catalyzing all steps from β-carotene to astaxanthin formation by oxygenation of carbon 3 and 4. The reaction sequence is first 4-ketolation of β-carotene followed by 3-hydroxylation. A hydroxylation mechanism at allylic carbon atoms has been proposed for the generation of 4-keto and 3-hydroxy groups at both β-ionone ends.


Astaxanthin synthase Cytochrome P450 Genetic complementation Monooxygenase 



This work was supported by grant QLK1-CT-2001-00780 from the European Commission.


  1. An GH, Johnson E (1990) Influence of light on growth and pigmentation of the yeast Pfaffia rhodozyma. Antonie van Leeuwenhoek 57:191–203CrossRefPubMedGoogle Scholar
  2. An GH, Bielich J, Auerbach R, Johnson EA (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell cortin. BioTechnol 9:70–73CrossRefGoogle Scholar
  3. Andrewes AG, Starr MP (1976) (3R.3′R)-Astaxanthin from yeast Phaffia rhodozyma. Phytochem 15:1009–1011CrossRefGoogle Scholar
  4. Andrewes AG, Phaff HJ, Starr MR (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochem 15:1003–1007CrossRefGoogle Scholar
  5. Blasco F, Kauffmann I, Schmidt RD (2004) CYP175A1 from Thermus thermophilus HB27, the first β-carotene hydroxylase of the P450 superfamily. Appl Micobiol Biotechnol 64:671–674CrossRefGoogle Scholar
  6. Breitenbach J, Misawa N, Kajiwara S, Sandmann G (1996) Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol Lett 140:241–246PubMedCrossRefGoogle Scholar
  7. Britton G (1988) Biosynthesis of carotenoids. In: Goodwin T (eds) Plant pigments. Academic, London pp 133–138Google Scholar
  8. Bouvier F, Keller Y, d’Harlinguer A, Camara C (1998) Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta 1391:320–328PubMedGoogle Scholar
  9. Cunningham FX, Gantt E (2005) A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J 41:478–492PubMedCrossRefGoogle Scholar
  10. Danielson P, MacIntyre R, Fogleman J (1997) Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: evidence for involvement in host-plant allelochemical resistance. Proc Natl Acad Sci USA 94:10797–10802CrossRefPubMedGoogle Scholar
  11. Girard P, Falconnier B, Bricout J, Vladescu B (1994) β-Carotene producing mutants of Phaffia rhodozyma. Appl Microbiol Biotechnol 41:183–191CrossRefGoogle Scholar
  12. Golubev WI (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11:101–110PubMedCrossRefGoogle Scholar
  13. Gotoh O, Fujii-Kuriyama Y (1989) Evolution, structure and gene regulation in cytochrome P-450. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation. Taylor and Francis, New York pp 195–243Google Scholar
  14. Guengerich FP, Martin MV, Guo Z, Chun Y (1996) Purification of functional recombinant P450s from bacteria. Methods Enzymol 272:35–44PubMedCrossRefGoogle Scholar
  15. Hanna Z, Fregau C, Prefontaine G, Brousseau R (1984) Construction of a family of universal expression plasmid vectors. Gene 30:247–250PubMedCrossRefGoogle Scholar
  16. Hoshino T, Ojima K, Setoguchi Y (2000) Astaxanthin synthase. Hoffman-LaRoche, European patent no. 1035206–A3Google Scholar
  17. Johnson E, Gil-Hwan An (1991) Astaxanthin from microbial sources. Critical Rev Biotechnol 11:297–326CrossRefGoogle Scholar
  18. Johnston S, DeVit M (1996) Biolistic tranformation of yeasts. Methods Mol Biol 53:147–153PubMedGoogle Scholar
  19. Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T, Nishio N, Nagi S, Misawa N (1995) Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol Biol 29:343–352CrossRefPubMedGoogle Scholar
  20. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson M (1995) Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic resistance cassettes. Gene 166:175–176PubMedCrossRefGoogle Scholar
  21. Masamoto K, Misawa N, Kaneko T, Kikuno R, Toh H (1998) ß-Carotene hydroxylase gene from the cyanobacterium Synechocystis sp. strainPCC6803. Plant Cell Physiol 39:560–564PubMedGoogle Scholar
  22. Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products espressed in Escherichia coli. J Bacteriol 172:6704–6712PubMedGoogle Scholar
  23. Misawa N, Kajiwara S, Kondo K, Yokoyama A, Satomi Y, Saito T, Miki W, Ohtani T (1995) Canthaxanthin biosynthesis by the conversion of methylene to keto groups, in a hydrocarbon β-carotene by a single gene. Biochem Biophy Res Commun 209:867–876CrossRefGoogle Scholar
  24. Sakaguchi M, Mihara K, Sato R (1987) A short amino-terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence. EMBO J 6:2425–2431PubMedGoogle Scholar
  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  26. Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chem Biochem 3:629–635Google Scholar
  27. Sandmann G, Misawa N (2002) Fungal carotenoids. In: Osiewacz HD (ed) The Mycota X: industrial applications. Springer, Berlin, Heidelberg New York, pp 247–262Google Scholar
  28. Schroeder W, Johnson E (1995) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270:18374–18379CrossRefPubMedGoogle Scholar
  29. Steiger S, Schäfer L, Sandmann G (1999) High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J Photochem Photobiol B-Biol 52:14–18CrossRefGoogle Scholar
  30. Steiger S, Sandmann G (2004) Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotechnol Lett 26:813–817CrossRefPubMedGoogle Scholar
  31. Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci USA 101:402–407CrossRefPubMedGoogle Scholar
  32. Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ (1999a) Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262:453–61CrossRefGoogle Scholar
  33. Verdoes JC, Misawa N, van Ooyen AJJ (1999b) Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioengin 63:750–755CrossRefGoogle Scholar
  34. Verdoes JC, Sandmann G, Visser H, Diaz M, van Mossel M, van Ooyen AJJ (2003) Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Appl Environ Microbiol 69:3728–3738CrossRefPubMedGoogle Scholar
  35. Visser H, deBont JAM, Verdoes JC (1999) Isolation and characterization of the epoxide hydroxylase-encoding gene from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 65:5459–5463PubMedGoogle Scholar
  36. Visser H, Sandmann G, Verdoes JC (2005) Xanthophylls in fungi: metabolic engineering of the astaxanthin biosynthetic pathway in Xanthophyllomyces dendrorhous. In: Barredo J (eds) Methods in biotechnology Microbial processes and products. Totowa, NJ USA pp 257–272Google Scholar
  37. Yabusaki Y, Murakami H, Ohkawa H (1988) Primary structure of Saccharomyces cerevisiae NADPH-cytochrome P450 reductase deduced from nucleotide sequence of its cloned gene. J Biochem 103:1004–1010PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kazuyuki Ojima
    • 1
  • Jürgen Breitenbach
    • 2
  • Hans Visser
    • 3
    • 5
  • Yutaka Setoguchi
    • 1
  • Kazuyuki Tabata
    • 1
  • Tatsuo Hoshino
    • 1
    • 4
  • Johan van den Berg
    • 3
  • Gerhard Sandmann
    • 2
    Email author
  1. 1.Department of Applied MicrobiologyNippon Roche Research CenterKamakura, KanagawaJapan
  2. 2.J. W. Goethe UniversitätFrankfurtGermany
  3. 3.Section of Fungal GenomicsWageningen UniversityWageningenThe Netherlands
  4. 4.Tamagawa University Research InstituteMachida, TokyoJapan
  5. 5.Dyadic Nederland BVZeistThe Netherlands

Personalised recommendations