Molecular Genetics and Genomics

, Volume 275, Issue 2, pp 105–113 | Cite as

Wide-cross whole-genome radiation hybrid mapping of the cotton (Gossypium barbadense L.) genome

  • Wenxiang Gao
  • Z. Jeffrey Chen
  • John Z. Yu
  • Russell J. Kohel
  • James E. Womack
  • David M. Stelly
Original Paper

Abstract

Whole-genome radiation hybrid mapping has been applied extensively to human and certain animal species, but little to plants. We recently demonstrated an alternative mapping approach in cotton (Gossypium hirsutum L.), based on segmentation by 5-krad γ-irradiation and derivation of wide-cross whole-genome radiation hybrids (WWRHs). However, limitations observed at the 5-krad level suggested that higher doses might be advantageous. Here, we describe the development of an improved second-generation WWRH panel after higher dose irradiation and compare the resulting map to the 5-krad map. The genome of G. hirsutum (n=26) was used to rescue the radiation-segmented genome of G. barbadense (n=26) introduced via 8- and 12-krad γ-irradiated pollen. Viable seedlings were not recovered after 12-krad irradiation, but 8-krad irradiation permitted plant recovery and construction of a 92-member WWRH mapping panel. Assessment of 31 SSR marker loci from four chromosomes revealed that the 8-krad panel has a marker retention frequency of ca. 76%, which is approximately equivalent to the rate of loss in a low-dose animal radiation hybrid panel. Retention frequencies of loci did not depart significantly from independence when compared between the A and D subgenomes, or according to positions along individual chromosomes. WWRH maps of chromosomes 10 and 17 were generated by the maximum likelihood RHMAP program and the general retention model. The resulting maps bolster evidence that WWRH mapping complements traditional linkage mapping and works in cotton, and that the 8-krad panel complements the 5-krad panel by offering higher rates of chromosome breakages, lower marker retention frequency, and more retention patterns.

Keywords

Genome Radiation hybrid Gamma Mapping Plant 

Notes

Acknowledgements

We thank D. Raska for greenhouse culture of WWRHs; M. Boehnke’s group at University of Michigan for offering the RHMAP program; Plant Research International for offering MapChart 2.1; and the Texas A&M University Nuclear Science Center for helping the irradiation treatment. This work was supported in part by grants from the Texas Agricultural Experimental Station, Texas Biotechnology Initiative, Texas Higher Education Coordinating Board Advanced Technology Program and Cotton Incorporated.

Supplementary material

438_2005_69_MOESM1_ESM.pdf (10 kb)
Supplementary material

References

  1. Beasley JO (1940) The origin of American tetraploid Gossypium species. Am Nat 74:285–286CrossRefGoogle Scholar
  2. Beasley JO (1942) Meiotic chromosome behavior in species hybrids, haploids, and induced polyploids of Gossypium. Genetics 27:25–54PubMedGoogle Scholar
  3. Brubaker CL, Bourland FM, Wendel JF (1999) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production. Wiley, New York, pp 3–31Google Scholar
  4. Chowdhary BP, Raudsepp T, Honeycutt D, Owens EK, Piumi F, Guerin G, Matise TC, Kata SR, Womack JE, Skow LC (2002) Construction of a 5000rad whole-genome radiation hybrid panel in the horse and generation of a comprehensive and comparative map for ECA11. Mamm Genome 13:89–94CrossRefPubMedGoogle Scholar
  5. Copenhaver GP, Browne WE, Preuss D (1998) Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci USA 95:247–252CrossRefPubMedGoogle Scholar
  6. Cox DR, Burmeister M, Price ER, Kim S, Myers RM (1990) Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250:245–250PubMedCrossRefGoogle Scholar
  7. Edwards GA, Mirza MA (1979) Genomes of the Australian wild species of cotton II. The designation of a new G genome for Gossypium bickii. Can J Genet Cytol 21:367–372Google Scholar
  8. Endrizzi JE, Turcotte EL, Kohel RJ (1984) Qualitative genetics, cytology, and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton. ASA/CSSA/SSSA Publishers, Madison, pp 81–129Google Scholar
  9. Gao W, Chen ZJ, Yu JZ, Raska D, Kohel RJ, Womack JE, Stelly DM (2004) Wide-cross whole-genome radiation hybrid (WWRH) mapping of cotton (Gossypium hirsutum L). Genetics 167:1317–1329CrossRefPubMedGoogle Scholar
  10. Geever RF, Katterman F, Endrizzi JE (1989) DNA hybridization analyses of a Gossypium allotetraploid and two closely related diploid species. Theor Appl Genet 77:553–559CrossRefGoogle Scholar
  11. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:11383–11390CrossRefPubMedGoogle Scholar
  12. Goss SJ, Harris H (1975) New method for mapping genes in human chromosomes. Nature 255:680–684CrossRefPubMedGoogle Scholar
  13. Kiguwa SL, Hextall P, Smith AL, Critcher R, Swinburne J, Millon L, Binns MM, Goodfellow PN, McCarthy LC, Farr CJ, Oakenfull EA (2000) A horse whole-genome-radiation hybrid panel: chromosome 1 and 10 preliminary maps. Mamm Genome 11:803–805CrossRefPubMedGoogle Scholar
  14. Kimber G (1961) Basis of the diploid-like meiotic behavior of polyploid cotton. Nature 191:98–99CrossRefGoogle Scholar
  15. Kwock C, Korn RM, Davis ME, Burt DW, Critcher R, McCarthy L, Paw BH, Zon LI, Goodfellow PN, Schmitt K (1998) Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates. Nucleic Acids Res 26:3562–3566CrossRefPubMedGoogle Scholar
  16. Livingstone KD, Churchill G, Jahn MK (2000) Linkage mapping in populations with karyotypic rearrangements. J Hered 91:423–428CrossRefPubMedGoogle Scholar
  17. McCarthy LC (1996) Whole genome radiation hybrid mapping. Trends Genet 12:491–493CrossRefPubMedGoogle Scholar
  18. Mei M, Syed NH, Gao W, Thaxton PM, Stelly DM, Chen ZJ (2003) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291CrossRefPubMedGoogle Scholar
  19. Menzel MY, Richmond KL, Dougherty BJ (1985) A chromosome translocation breakpoint map of the Gossypium hirsutum genome. J Hered 76:406–414Google Scholar
  20. Olivier M, Aggarwal A, Allen J, Almendras AA, Bajorek ES, Beasley EM, Brady SD, Bushard JM, Bustos VI, Chu A, Chung TR, De Witte A, Denys ME, Dominguez R, Fang NY, Foster BD, Freudenberg RW, Hadley D, Hamilton LR, Jeffrey TJ, Kelly L, Lazzeroni L, Levy MR, Lewis SC, Liu X, Lopez FJ, Louie B, Marquis JP, Martinez RA, Matsuura MK, Misherghi NS, Norton JA, Olshen A, Perkins SM, Perou AJ, Piercy C, Piercy M, Qin F, Reif T, Sheppard K, Shokoohi V, Smick GA, Sun WL, Stewart EA, Fernando J, Tejeda, Tran NM, Trejo T, Vo NT, Yan SC, Zierten DL, Zhao S, Sachidanandam R, Trask BJ, Myers RM, Cox DR (2001) A high-resolution radiation hybrid map of the human genome draft sequence. Science 291:1298–1302CrossRefPubMedGoogle Scholar
  21. Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production. Wiley, New York, pp 33–63Google Scholar
  22. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369CrossRefPubMedGoogle Scholar
  23. Phillips LL, Strickland MA (1966) The cytology of a hybrid between Gossypium hirsutum and G. longicalyx. Can J Genet Cytol 8:91–95Google Scholar
  24. Puchta H, Hohn B (1996) From centiMorgans to base pairs: homologous recombination in plants. Trends Plant Sci 1:340–348Google Scholar
  25. Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  26. Rexroad CE III, Owens EK, Johnson JS, Womack JE (2000) A 12000 rad whole genome radiation hybrid panel for high resolution mapping in cattle: characterization of the centromeric end of chromosome 1. Anim Genet 31:262–265CrossRefPubMedGoogle Scholar
  27. Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 156:327–339PubMedGoogle Scholar
  28. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417CrossRefPubMedGoogle Scholar
  29. Shappley ZW, Jenkins JN, Meredith WR, McCarty JC Jr (1998) An RFLP linkage map of Upland cotton, Gossypium hirsutum L. Theor Appl Genet 97:756–761CrossRefGoogle Scholar
  30. Skovsted A (1934) Cytological studies in cotton. II. Two interspecific hybrids between Asiatic and New World cottons. J Genet 28:407–424Google Scholar
  31. Stephens SG (1949) The cytogenetics of speciation in Gossypium. I. Selective elimination of the donor parent genotype in interspecific backcrosses. Genetics 34:627–637Google Scholar
  32. Stephens SG (1950) The internal mechanism of speciation in Gossypium. Bot Rev 16:115–149CrossRefGoogle Scholar
  33. Ulloa M, Meredith WR Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170Google Scholar
  34. Walter MA, Spillet DJ, Thomas P, Weissienbach J, Goodfellow PN (1994) A method for constructing radiation hybrid maps of whole genomes. Nat Genet 7:22–28CrossRefPubMedGoogle Scholar
  35. Wardrop J, Snape J, Powell W, Machray GC (2002) Constructing plant radiation hybrid panels. Plant J 31:223–228CrossRefPubMedGoogle Scholar
  36. Womack JE, Johnson JS, Owens EK, Rexroad CE III, Schlapfer J, Yang YP (1997) A whole-genome radiation hybrid panel for bovine gene mapping. Mamm Genome 8:854–856CrossRefPubMedGoogle Scholar
  37. Yu J, Park YH, Lazo GR, Kohel RJ (1998) Molecular mapping of the cotton genome: QTL analysis of fiber quality properties. In: Proceedings of Beltwide Cotton Conf, Natl Cotton Counc Am, Memphis, Tennessee, pp 485Google Scholar
  38. Yu A, Zhao C, Fan Y, Jang W, Mungall AJ, Deloukas P, Olsen A, Doggett NA, Ghebranious N, Broman KW, Weber JL (2001) Comparison of human genetic and sequence-based physical maps. Nature 409:951–953CrossRefPubMedGoogle Scholar
  39. Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. x Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Wenxiang Gao
    • 1
    • 4
  • Z. Jeffrey Chen
    • 1
  • John Z. Yu
    • 2
  • Russell J. Kohel
    • 2
  • James E. Womack
    • 3
  • David M. Stelly
    • 1
  1. 1.Department of Soil and Crop SciencesTexas A & M UniversityCollege StationUSA
  2. 2.USDA-ARSGermplasm Research UnitCollege StationUSA
  3. 3.Department of Veterinary PathobiologyTexas A&M UniversityCollege StationUSA
  4. 4.Department of GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations