Molecular Genetics and Genomics

, Volume 272, Issue 2, pp 204–215 | Cite as

Identification of a novel two-partner secretion system from Burkholderia pseudomallei

  • N. F. Brown
  • C.-A. Logue
  • J. A. Boddey
  • R. Scott
  • R. G. Hirst
  • I. R. BeachamEmail author
Original Paper


Two adjacent genes, bpaA and bpaB, whose products display significant similarity to a number of two-partner secretion (TPS) systems have been identified in Burkholderia pseudomallei strain 08, but are absent from the closely related avirulent species B. thailandensis. They possess a number of sequence features characteristic of TPS systems, including the presence of an NPNGI motif in a region of BpaA which strongly resembles a TPS secretion domain. BpaA is a very large protein (~530 kDa) and contains three repeats, each 600–800-amino acids long. Putative membrane-spanning regions in BpaB were identified through alignment with TpsB family members, and this also revealed an N-terminal extension not found in other TpsB proteins. The bpaA gene was found to be absent from the majority of B. pseudomallei strains. It appears that bpaAB are located within a putative genomic island that is inserted in close proximity to a methionine tRNACAT-encoding gene. Expression of BpaA was undetectable in cells grown in laboratory media. However, owing to the similarity of BpaA to known adhesin molecules, a potential role of BpaA in virulence was investigated in cell culture and in an animal model, but no evidence for such a role was found in these test systems.


Burkholderia pseudomallei Secretion Deletion mutagenesis DNA sequence 



We thank Dr. Petra Oyston for providing plasmids. NFB and JAB are recipients of an Australian Postgraduate Award and C-AL holds a Griffith University Postgraduate Research Award


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Ausubel FW, Brent R, Kingston RE, Moore DD, Smith JA (1987) Current protocols in molecular biology. Wiley Interscience, New YorkGoogle Scholar
  3. Barenkamp SJ, St. Geme III JW (1994) Genes encoding high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae are part of gene clusters. Infect Immun 62:3320–3328Google Scholar
  4. Brett PJ, DeShazer D, Woods DE (1997) Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei -like strains. Epidemiol Infect 118:137–148CrossRefPubMedGoogle Scholar
  5. Brett PJ, DeShazer D, Woods DE (1998) Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei -like species. Int J Syst Bacteriol 48:317–320PubMedGoogle Scholar
  6. Brown NF, Beacham IR (2000) Cloning and analysis of genomic differences unique to Burkholderia pseudomallei by comparison with B. thailandensis. J Med Microbiol 49:993–1001PubMedGoogle Scholar
  7. Brown NF, Boddey JA, Flegg CP, Beacham IR (2002) Adherence of Burkholderia pseudomallei cells to cultured human epithelial cell lines is regulated by growth temperature. Infect Immun 70:974–980CrossRefPubMedGoogle Scholar
  8. Brown TA (1991) Molecular biology labfax. BIOS Scientific Publishers Limited, Oxford, UKGoogle Scholar
  9. Chua KL, Chan YY, Gan YH (2003) Flagella are virulence determinants of Burkholderia pseudomallei. Infect Immun 71:1622–1629CrossRefPubMedGoogle Scholar
  10. Cope LD, Thomas SE, Latimer JL, Slaughter C., Muller-Eberhard U, Hansen EJ (1994) The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol 13:863–873Google Scholar
  11. Cope LD, Yogev R, Muller-Eberhard U, Hansen E (1995) A gene cluster involved in the utilisation of both free heme and heme:hemopexin by Haemophilus influenzae Type B. J Bacteriol 177:2644–2653PubMedGoogle Scholar
  12. Currie BJ, Fisher DA, Howard DM, Burrow JNC, Lo D, Selvanayagam S, Anstey NM, Huffam SE, Snelling PL, Marks PJ, Stephens DP, Lum GD, Jacups SP, Krause VL (2000a) Endemic melioidosis in tropical Northern Australia: a 10 year prospective study and review of the literature. Clin Infect Dis 31:981–986CrossRefPubMedGoogle Scholar
  13. Currie BJ, Fisher DA, Howard DM, Burrow JNC, Selvanayagam S, Snelling PL, Anstey NM, Mayo MJ (2000b) The epidemiology of melioidosis in Australia and Papua New Guinea. Acta Trop 74:121–127CrossRefPubMedGoogle Scholar
  14. Dance DAB (2000) Melioidosis as an emerging global problem. Acta Trop 74:115–119CrossRefPubMedGoogle Scholar
  15. DeShazer D, Brett PJ, Woods DE (1998) The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 30:1081–1100CrossRefPubMedGoogle Scholar
  16. Eisenberg D, Weiss M, Terwillinger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 81:140–144PubMedGoogle Scholar
  17. Fellay R, Frey J, Krisch H (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154CrossRefPubMedGoogle Scholar
  18. Goyard S, Bertin P (1997) Characterization of BpH3, an H-NS-like protein in Bordetella pertussis. Mol Microbiol 24:815–823CrossRefPubMedGoogle Scholar
  19. Grass S, St Geme III JW (2000) Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: roles of the N-terminal and C-terminal domains. Mol Microbiol 36:55–67CrossRefPubMedGoogle Scholar
  20. Guedin S, Willery E, Tommassen J, Fort E, Drobecq H, Locht C, Jacob-Dubuisson F (2000) Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 275:30202–30210CrossRefPubMedGoogle Scholar
  21. Henderson IR, Cappello R, Nataro JP (2000a) Autotransporter proteins, evolution and redefining protein secretion. Trends Microbiol 8:529–532CrossRefPubMedGoogle Scholar
  22. Henderson IR, Cappello R, Nataro JP (2000b) Autotransporter proteins, evolution and redefining protein secretion: response. Trends Microbiol 8:534–535CrossRefPubMedGoogle Scholar
  23. Henderson I., Nataro JP, Kaper JB, Meyer TF, Farrand SK, Burns DL, Finlay BB, St Geme III JW (2000c) Renaming protein secretion in Gram-negative bacteria. Trends Microbiol 8:352CrossRefGoogle Scholar
  24. Jacob-Dubuisson F, Buisine C, Willery E, Renauld-Mongenie G, Locht C (1997) Lack of functional complementation between Bordetella pertussis filamentous hemaglutinin and Proteus mirabilis HpmA hemolysin secretion machineries. J Bacteriol 179:775–783PubMedGoogle Scholar
  25. Jacob-Dubuisson F, Locht C, Antoine R (2001) Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40:306–313CrossRefPubMedGoogle Scholar
  26. Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary structures for RNA. Proc Natl Acad Sci USA 86:7706–7710PubMedGoogle Scholar
  27. Kespichayawattana W, Rattanachetkul R, Wanun T, Utaisincharoen P, Sirisinha S (2000) Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68:5377–5384CrossRefPubMedGoogle Scholar
  28. Leelarasamee A (1998) Burkholderia pseudomallei: the unbeatable foe? Southeast Asian J Trop Med Public Health 29:410–415PubMedGoogle Scholar
  29. Leelarasamee A (2000) Melioidosis in Southeast Asia. Acta Trop 74:129–132CrossRefPubMedGoogle Scholar
  30. Makhov AM, Hannah JH, Brennan MJ, Trus BL, Kocsis E, Conway JF, Wingfield PT, Simon MN, Steven AC (1994) Filamentous hemagglutinin of Bordetella pertussis: a bacterial adhesin formed as a 50-nm monomeric rod based on a 19 residue repeat motif rich in beta strands and turns. J Mol Biol 241:110–124CrossRefPubMedGoogle Scholar
  31. Milton DL, O’Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319PubMedGoogle Scholar
  32. Miyagi K, Kawakami K, Saito A (1997) Role of reactive nitrogen and oxygen intermediates in gamma interferon-stimulated murine macrophage bactericidal activity against Burkholderia pseudomallei. Infect Immun 65:4108–4113PubMedGoogle Scholar
  33. Nielsen H, Engelbrecht J, Soren B, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10:1–6CrossRefGoogle Scholar
  34. Penfold RJ, Pemberton JM (1992) An improved suicide vector for the construction of chromosomal insertion mutations in bacteria. Gene 118:145–146CrossRefPubMedGoogle Scholar
  35. Reckseidler SL, DeShazer D, Sokol PA, Woods DE (2001) Detection of bacterial virulence genes by subtractive hybridisation: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun 69:34–44CrossRefPubMedGoogle Scholar
  36. Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD (1990) Recognition of a bacterial adhesin by an integrin: macrophage CR3 (αmβ2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61:1375–1382CrossRefPubMedGoogle Scholar
  37. Salanoubat M, et al (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502CrossRefPubMedGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  39. Schiebel E, Schwarz H, Braun V (1989) Subcellular location and unique secretion of the hemolysin of Serratia marcescens. J Biol Chem 264:16311–16320.PubMedGoogle Scholar
  40. Schonherr R, Tsolis R, Focareta T, Braun V (1993) Amino acid replacements in the Serratia marcescens haemolysin ShlA define sites involved in activation and secretion. Mol Microbiol 9:1229–1237PubMedGoogle Scholar
  41. St. Geme III JW, Grass S (1998) Secretion of the Haemophilus influenzae HMW1 and HMW2 adhesins involves a periplasmic intermediate and requires the HMWB and HMWC proteins. Mol Microbiol 27:617–630CrossRefPubMedGoogle Scholar
  42. Stevens MP, Wood MW, Taylor LA, Monaghan P, Hawes P, Jones PW, Wallis TS, Galyov EE (2002) An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 46:649–659CrossRefPubMedGoogle Scholar
  43. Ulett GC, Currie BJ, Clair TW, Mayo M, Ketheesan N, LaBrooy J, Gal D, Norton R, Ashurst Smith C, Barnes JL, Warner J, Hirst RG (2001) Burkholderia pseudomallei virulence: definition, stability and association with clonality. Microbes Infect 3:621–631CrossRefPubMedGoogle Scholar
  44. Vuddhakul V, Tharavichitkul P, Na-Ngam N, Jitsurong S, Kunthawa B, Noimay P, Noimay P, Binla A, Thamlikitkul V (1999) Epidemiology of Burkholderia pseudomallei in Thailand. Aust J Trop Med Hyg 60:458–461Google Scholar
  45. Willems RJL, Geuijen C, van der Heide HGJ, Renauld G, Bertin P, van den Akker WMR, Locht C, Mooi FR (1994) Mutational analysis of the Bordetella pertussis fim/fha gene cluster: identification of a gene with sequence similarities to haemolysin accessory genes involved in export of FHA. Mol Microbiol 11:337347PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • N. F. Brown
    • 1
    • 3
  • C.-A. Logue
    • 1
  • J. A. Boddey
    • 1
  • R. Scott
    • 2
  • R. G. Hirst
    • 2
  • I. R. Beacham
    • 1
    Email author
  1. 1.School of Health ScienceGriffith University-Gold Coast CampusGold CoastAustralia
  2. 2.Department of Microbiology and ImmunologyJames Cook UniversityTownsvilleAustralia
  3. 3.Biotechnology LaboratoryUniversity of British ColumbiaVancouverCanada

Personalised recommendations