Molecular Genetics and Genomics

, Volume 271, Issue 5, pp 577–585

The hAT -like DNA transposon DodoPi resides in a cluster of retro- and DNA transposons in the stramenopile Phytophthora infestans

Original Paper

Abstract

A family of transposable elements belonging to the hAT group of DNA transposons is described from an oomycete, the plant pathogen Phytophthora infestans. The family, named DodoPi, was identified by studying a hotspot for retro- and DNA transposon insertions adjacent to the mating type locus. The DodoPi family comprises a small number of full-length copies, each of which is 2.7 kb long and predicted to encode a transposase-like protein consisting of 617 amino acids, and several truncated copies. Both types contain 12-bp terminal inverted repeats and are flanked by 8-bp target site duplications. Despite the detection of a DodoPi transcript and of many polymorphisms between isolates, conclusive evidence of recent transposition was not obtained. A phylogenetic analysis indicated that DodoPi was novel, with only modest similarity to some elements from plants and fungi. Relatives were detected in only some members of the genus. This is the first DNA transposon identified in the stramenopile group of eukaryotes.

Keywords

Class II element DNA transposable element Late blight Miniature inverted repeat transposable element Transposon cluster 

References

  1. Abu-El Samen F, Secor GA, Gudmestad NC (2003) Variability in virulence among sexual progenies of Phytophthora infestans. Phytopathology 93:293–304Google Scholar
  2. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977CrossRefPubMedGoogle Scholar
  3. Bigot Y, Auge-Gouillou C, Periquet G (1996) Computer analyses reveal a hobo -like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1 - Mariner transposon family. Gene 174:265–271PubMedGoogle Scholar
  4. Buddenhagen IW (1958) Induced mutations and variability in Phytophthora cactorum. Am J Bot 45:355–365Google Scholar
  5. Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: Hobo, Activator , and Tam 3. Cell 66:465–472PubMedGoogle Scholar
  6. Chamnanpunt J, Shan W-X, Tyler, BM (2001) High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae. Proc Natl Acad Sci USA 98:14530–14535CrossRefPubMedGoogle Scholar
  7. Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1033PubMedGoogle Scholar
  8. Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32CrossRefPubMedGoogle Scholar
  9. Craig NL, Craigie R, Gellert M, Lambowitz AM (2002) Mobile DNA II. ASM Press, Washington, D.C.Google Scholar
  10. Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91:942–946Google Scholar
  11. Emerson RA (1914) The inheritance of a recurring somatic variation in variegated ears of maize. Am Nat 48:87–115CrossRefGoogle Scholar
  12. Erwin DC, Zentmeyer GA, Galindo J, Niederhauser JS (1963) Variation in the genus Phytophthora. Annu Rev Phytopathol 1:375–396CrossRefGoogle Scholar
  13. Essers L, Adolphs RH, Kunze R (2000) A highly conserved domain of the maize Activator transposase is involved in dimerization. Plant Cell 12:211–224CrossRefPubMedGoogle Scholar
  14. Fabritius A-L, Cvitanich C, Judelson HS (2002) Stage-specific gene expression during sexual development in Phytophthora infestan s. Mol Microbiol 45:1057–1066CrossRefPubMedGoogle Scholar
  15. Fedoroff NV (1999) The Suppressor -mutator element and the evolutionary riddle of transposons. Genes Cells 4:11–19PubMedGoogle Scholar
  16. Feschotte C, Zhang X, Wessler SR (2002). Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, D.C., pp 1147–1158Google Scholar
  17. Finnegan DJ (1990) Transposable elements and DNA transposition in eukaryotes. Curr Opin Cell Biol 2:471–477PubMedGoogle Scholar
  18. Fry WE, Goodwin SB (1997) Resurgence of the Irish potato famine fungus. Bioscience 47:363–371Google Scholar
  19. Gomez-Gomez E, Anaya N, Roncero MIG, Hera C (1999) Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum. Fungal Genet Biol 27:67–76PubMedGoogle Scholar
  20. Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84:5823–5827PubMedGoogle Scholar
  21. He ZH, Dong HT, Dong JX, Li DB, Ronald PC (2000) The rice Rim2 transcript accumulates in response to Magnaporthe grisea and its predicted protein product shares similarity with TNP2-like proteins encoded by CACTA transposons. Mol Gen Genet 264:2–10CrossRefPubMedGoogle Scholar
  22. Holyoake AJ, Kidwell MG (2003) Vege and Mar: two novel hAT MITE families from Drosophila willistoni. Mol Biol Evol 20:163–167CrossRefPubMedGoogle Scholar
  23. Judelson HS (1996) Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. Genetics 144:1005–1013PubMedGoogle Scholar
  24. Judelson HS (2002) Sequence variation and genomic amplification of a family of Gypsy-like elements in the oomycete genus Phytophthora. Mol Biol Evol 19:1313–1322PubMedGoogle Scholar
  25. Judelson HS, Randall TA (1998) Families of repeated DNA in the oomycete Phytophthora infestans and their distribution within the genus. Genome 41:605–615CrossRefPubMedGoogle Scholar
  26. Judelson HS, Spielman LJ, Shattock RC (1995) Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. Genetics 141:503–512Google Scholar
  27. Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Eukaryotic Cell 2:191–199CrossRefPubMedGoogle Scholar
  28. Kamoun S, Hraber P, Sobral B, Nuss D, Govers F (1999) Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol 28:94–106.CrossRefPubMedGoogle Scholar
  29. Lam ST (2001) Phytophthora genomics consortium. Phytopathology 91:S158Google Scholar
  30. Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9PubMedGoogle Scholar
  31. Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99Google Scholar
  32. Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86:813–833.Google Scholar
  33. Kunze R, Weil CF (2002) The hAT and CACTA superfamilies of plant transposons. In: Craig NL, R Craigie, M Gellert, AM Lambowitz (eds) Mobile DNA II. ASM Press, Washington, D. C., pp. 565–610.Google Scholar
  34. Kunze R, Stochaj U, Lauf S, Starlinger P (1987) Transcription of transposable element Activator (Ac) of Zea mays. EMBO J 6:1555–1563Google Scholar
  35. Langley CH, Montgomery EA, Hudson R, Kaplan N, Charlesworth B (1988) On the role of unequal exchange in the containment of copy number. Genet Res (Camb) 52:223–235Google Scholar
  36. Linder-Basso D, Foglia R, Zhu P, Hillman BI (2001) Crypt1, an active Ac -like transposon from the chestnut blight fungus, Cryphonectria parasitica. Mol Gen Genet 265:730–738Google Scholar
  37. Margulis L, Schwartz KV (2000). Five kingdoms: an illustrated guide to the phyla of life on earth. WH Freeman, New YorkGoogle Scholar
  38. Michel K, O’Brochta DA, Atkinson PW (2002) Does the DSE motif form the active center in the Hermes transposase? Gene 298:141–146CrossRefPubMedGoogle Scholar
  39. Nitta N, Farman ML, Leong SA (1997) Genome organization of Magnaporthe grisea: integration of genetic maps, clustering of transposable elements and identification of genome duplications and rearrangements. Theor Appl Genet 95:20–32Google Scholar
  40. O’Brochta DA, Atkinson PW (1996) Transposable elements and gene transformation in non-drosophilid insects. Insect Bioch Mol Biol 26:739–753CrossRefGoogle Scholar
  41. Olasz F, Kiss J, Koenig P, Buzas Z, Stalder R, Arber W (1998) Target specificity of insertion element IS30. Mol Microbiol 28:691–704CrossRefPubMedGoogle Scholar
  42. Randall TA, Judelson HS (1999) Construction of a bacterial artificial chromosome library of Phytophthora infestans and transformation of clones into P. infestans. Fungal Genet Biol 28:160–170CrossRefPubMedGoogle Scholar
  43. Randall TA, Ah Fong A, Judelson H (2003) Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. Fungal Genet Biol 38:75–84CrossRefPubMedGoogle Scholar
  44. Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158:949–957PubMedGoogle Scholar
  45. San Miguel P, Tikhonov A, Jin Y-K, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards Keith J, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768PubMedGoogle Scholar
  46. Sansome E (1980) Reciprocal translocation heterozygosity in heterothallic species of Phytophthora and its significance. Nature 241:344–345Google Scholar
  47. Tooley PW, Garfinkel DJ (1996) Presence of Ty1-copia group retrotransposon sequences in the potato late blight pathogen Phytophthora infestans. Mol Plant-Microbe Interact 9:305–309Google Scholar
  48. Tooley PW, Therrien CD (1987) Cytophotometric determination of the nuclear DNA content of 23 Mexican and 18 non-Mexican isolates of Phytophthora infestans. Exp Mycol 11:19–26Google Scholar
  49. Tooley PW, Carras MM, Falkenstein KF (1996) Relationships among group IV Phytophthora species inferred by restriction analysis of the ITS2 region. J Phytopathol 144:363–369Google Scholar
  50. Van-Der-Lee T, De-Witte I, Drenth A, Alfonso C, Govers F (1997) AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genet Biol 21:278–291CrossRefPubMedGoogle Scholar
  51. Villalba F, Lebrun M-H, Hua-Van A, Daboussi M-J, Grosjean-Cournoyer M-C (2001) Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Molec Plant-Microbe Interac 14:308–315Google Scholar
  52. Waterhouse GM (1963) Key to the species of Phytophthora de Bary. CMI Mycological Paper No. 92, Commonwealth Mycological Institute, Kew, UKGoogle Scholar
  53. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Plant PathologyUniversity of CaliforniaRiversideUSA

Personalised recommendations