Advertisement

Molecular Genetics and Genomics

, Volume 271, Issue 4, pp 387–393 | Cite as

Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

  • Z. Gojković
  • W. Knecht
  • E. Zameitat
  • J. Warneboldt
  • J.-B. Coutelis
  • Y. Pynyaha
  • C. Neuveglise
  • K. Møller
  • M. Löffler
  • J. Piškur
Original Paper

Abstract

The ability to propagate under anaerobic conditions is an essential and unique trait of brewer’s or baker’s yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic activity catalysed by dihydroorotate dehydrogenase (DHODase), on the enzymes of the respiratory chain in several yeast species. While the majority of yeasts possess a mitochondrial DHODase, Saccharomyces cerevisiae has a cytoplasmatic enzyme, whose activity is independent of the presence of oxygen. From the phylogenetic point of view, this enzyme is closely related to a bacterial DHODase from Lactococcus lactis. Here we show that S. kluyveri, which separated from the S. cerevisiae lineage more than 100 million years ago, represents an evolutionary intermediate, having both cytoplasmic and mitochondrial DHODases. We show that these two S. kluyveri enzymes, and their coding genes, differ in their dependence on the presence of oxygen. Only the cytoplasmic DHODase promotes growth in the absence of oxygen. Apparently a Saccharomyces yeast progenitor which had a eukaryotic-like mitochondrial DHODase acquired a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen.

Keyword

Yeast Pyrimidines Anaerobiosis Horizontal gene transfer Evolution 

Notes

Acknowledgments

The authors thank A. Kahn for reading and commenting on the manuscript. This project was partially supported by grants from the Danish Research Council and the DFG (Graduiertenkollegium Marburg).

References

  1. Andersson JO, Doolittle WF, Nesbo CL (2001) Are there bugs in our genome? Science 292:1848–1850CrossRefPubMedGoogle Scholar
  2. Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, WeinheimGoogle Scholar
  3. Bjornberg O, Rowland P, Larsen S, Jensen KF (1997) Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry 36:16197–16205CrossRefPubMedGoogle Scholar
  4. Bonneaud N, Ozier-Kalogeropoulos O, Labouesse G, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae / E.coli shuttle vectors. Yeast 7:609–615PubMedGoogle Scholar
  5. Cliften PF, Hillier LW, Fulton L, Graves T, Minier T, Gish WR, Waterston RH, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186CrossRefPubMedGoogle Scholar
  6. Denis-Duphil M (1989) Pyrimidine biosynthesis in Saccharomyces cerevisiae: the ura2 cluster gene, its multifunctional enzyme product, and other structural or regulatory genes involved in de novo UMP synthesis. Biochem Cell Biol 67:612–631PubMedGoogle Scholar
  7. Duntze W, Neumann D, Gancedo J M, Atzpodien W, Holzer H (1969) Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisie. Eur J Biochem 10:83–89PubMedGoogle Scholar
  8. Gancedo C, Serrano R (1989) Metabolism and physiology of Yeasts. In: Rose AH, Harrison JS (eds) The Yeasts (vol 3). Academic Press, London, pp 205–259Google Scholar
  9. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361PubMedGoogle Scholar
  10. Gojkovic Z, Jahnke K, Schnackerz KD, Piskur J (2000) PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol 295:1073–87CrossRefPubMedGoogle Scholar
  11. Gojkovic Z, Sandrini MPB, Piskur J (2001) Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 158:999–1011PubMedGoogle Scholar
  12. Hough JS, Briggs DE, Stevens R, Young TW (1982) Hopped worth and beer (Malting and brewing science, vol 2). Chapman and Hall, LondonGoogle Scholar
  13. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, and Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405PubMedGoogle Scholar
  14. Knecht W, Bergjohann U, Gonski S, Kirschbaum B, Löffler M (1996) Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur J Biochem 240:292–301PubMedGoogle Scholar
  15. Kurtzman CP, Robnett CJ (2003) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. FEMS Yeast Res 3:417–432CrossRefPubMedGoogle Scholar
  16. Langkjaer RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421:848–852CrossRefPubMedGoogle Scholar
  17. Møller K, Olsson L, Piskur J (2001) Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri. J Bacteriol 183:2485–2489CrossRefPubMedGoogle Scholar
  18. Møller K, Cristensen B, Forster J, Piskur J, Nielsen J, Olsson L (2002) Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol Bioeng 77:186–193CrossRefPubMedGoogle Scholar
  19. Nagy M, Lacroute F, Thomas D (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA 89:8966–8970PubMedGoogle Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  21. Shi N-Q, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipities bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50:339–345CrossRefPubMedGoogle Scholar
  22. Subik J, Kolarov J, Kovac L (1974) Anaerobic growth and formation of respiration-deficient mutants of various species of yeasts. FEBS Lett 45:263–266PubMedGoogle Scholar
  23. Tong XD, Xue B, Sun Y (2001) A novel magnetic affinity support for protein adsorption and purification. Biotechnol Prog 17:134–139CrossRefPubMedGoogle Scholar
  24. Ullrich A, Knecht W, Fries M, Löffler M (2001) Recombinant expression of N-terminal truncated mutants of the membrane bound mouse, rat and human flavoenzyme dihydroorotate dehydrogenase. A versatile tool to rate inhibitor effects? Eur J Biochem 268:1861–1868PubMedGoogle Scholar
  25. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  26. Vaughan-Martini A, Martini A (1998) A taxonomic study. In: Kurtzman CP, Fell J (eds) The Yeasts (vol 1). Elsevier Science, Amsterdam, pp 358–371Google Scholar
  27. Viser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792PubMedGoogle Scholar
  28. Wolfe K, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedGoogle Scholar
  29. Young TW, Lewis MJ (1995) Brewing. Chapman and Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Z. Gojković
    • 1
    • 4
  • W. Knecht
    • 1
  • E. Zameitat
    • 2
  • J. Warneboldt
    • 1
  • J.-B. Coutelis
    • 1
  • Y. Pynyaha
    • 1
  • C. Neuveglise
    • 3
  • K. Møller
    • 1
  • M. Löffler
    • 2
  • J. Piškur
    • 1
  1. 1.BioCentrum-DTU, Building 301Technical University of DenmarkLyngbyDenmark
  2. 2.Institut für Physiologische ChemiePhilipps-Universität MarburgMarburgGermany
  3. 3.Laboratoire de Microbiologie et Génétique MoleculaireINRA UMR1238, CNRS UMR2585Thiverval-GrignonFrance
  4. 4.ZGene A/SLyngbyDenmark

Personalised recommendations