Molecular Genetics and Genomics

, Volume 270, Issue 3, pp 216–224

Mak5p, which is required for the maintenance of the M1 dsRNA virus, is encoded by the yeast ORF YBR142w and is involved in the biogenesis of the 60S subunit of the ribosome

  • M. Zagulski
  • D. Kressler
  • A.-M. Bécam
  • J. Rytka
  • C. J. Herbert
Original Paper

Abstract

In this study, we show that the Saccharomyces cerevisiae ORF YBR142w, which encodes a putative DEAD-box RNA helicase, corresponds to MAK5. The mak5-1 allele is deficient in the maintenance of the M1 dsRNA virus, resulting in a killer minus phenotype. This allele carries two mutations, G218D in the conserved ATPase A-motif and P618S in a non-conserved region. We have separated these mutations and shown that it is the G218D mutation that is responsible for the killer minus phenotype. Mak5p is an essential nucleolar protein; depletion of the protein leads to a reduction in the level of 60S ribosomal subunits, the appearance of half-mer polysomes, and a delay in production of the mature 25S and 5.8S rRNAs. Thus, Mak5p is involved in the biogenesis of 60S ribosomal subunits.

Keywords

Saccharomyces cerevisiae  MAK5 DEAD-box helicase Ribosome biogenesis M1 dsRNA virus 

References

  1. Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330PubMedGoogle Scholar
  2. Becam AM, Nasr F, Racki WJ, Zagulski M, Herbert CJ (2001) Ria1p (Ynl163c), a protein similar to elongation factors 2, is involved in the biogenesis of the 60S subunit of the ribosome in Saccharomyces cerevisiae. Mol Genet Genomics 266:454–462CrossRefPubMedGoogle Scholar
  3. Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133CrossRefPubMedGoogle Scholar
  4. Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84Google Scholar
  5. Chuang RY, Weaver PL, Liu Z, Chang TH (1997) Requirement of the DEAD-box protein Ded1p for messenger RNA translation. Science 275:1468–1471PubMedGoogle Scholar
  6. Dalbadie-McFarland G, Abelson J (1990) JPRP5: a helicase-like protein required for mRNA splicing in yeast. Proc Natl Acad Sci USA 87:4236–4240PubMedGoogle Scholar
  7. De la Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:5201–5206CrossRefPubMedGoogle Scholar
  8. De la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198CrossRefPubMedGoogle Scholar
  9. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360PubMedGoogle Scholar
  10. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429Google Scholar
  11. Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schafer T, Kuster B, Tschochner H, Tollervey D, Gavin AC, Hurt E (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10:105–15PubMedGoogle Scholar
  12. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272PubMedGoogle Scholar
  13. Kressler D, de la Cruz J, Rojo M, Linder P (1998) Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol Cell Biol 18:1855–65PubMedGoogle Scholar
  14. Le Gouill C, Dery CV (1991) A rapid procedure for the screening of recombinant plasmids. Nucleic Acids Res 19:6655PubMedGoogle Scholar
  15. Linder P, Stutz F (2001) mRNA export: travelling with DEAD box proteins. Curr Biol 11:961–963CrossRefGoogle Scholar
  16. Linder P, Tanner NK, Banroques J (2001) From RNA helicases to RNPases. Trends Biochem Sci 26:339–341CrossRefPubMedGoogle Scholar
  17. Milkereit P, Kuhn H, Gas N, Tschochner H (2003) The pre-ribosomal network. Nucleic Acids Res 31:799–804CrossRefPubMedGoogle Scholar
  18. Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent chaperone in group I intron splicing. Cell 109:769–779PubMedGoogle Scholar
  19. Mortimer RK, Contopoulou CR, King JS (1992) Genetic and physical maps of Saccharomyces cerevisiae, Edition 11. Yeast 8:817–902PubMedGoogle Scholar
  20. Nielsen PJ, Trachsel H (1988) The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J 7:2097–2105PubMedGoogle Scholar
  21. Nissan TA, Bassler J, Petfalski E, Tollervey D, Hurt E (2002) 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J 21:5539–5547CrossRefPubMedGoogle Scholar
  22. Ohtake Y, Wickner RB (1995) Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol Cell Biol 15:2772–2781PubMedGoogle Scholar
  23. Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245PubMedGoogle Scholar
  24. Pause A, Sonenberg N (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factoreIF-4A. EMBO J 11:2643–2654PubMedGoogle Scholar
  25. Racki WJ, Becam AM, Nasr F, Herbert CJ (2000) Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae. EMBO J 19:4524–32PubMedGoogle Scholar
  26. Ridley SP, Sommer SS, Wickner RB (1984) Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 Double-Stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol Cell Biol 4:761–770PubMedGoogle Scholar
  27. Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring harbor, N.Y.Google Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  29. Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6:283–291PubMedGoogle Scholar
  30. Schwer B (2001) A new twist on RNA helicases: DexH/D box proteins as RNPases. Nat Struct Biol 8:113–116CrossRefPubMedGoogle Scholar
  31. Tanner NK, Linder P (2001) DexD/H Box RNA helicase: from genetic motors to specific dissociation functions. Mol Cell 8:251–262PubMedGoogle Scholar
  32. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630PubMedGoogle Scholar
  33. Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075CrossRefPubMedGoogle Scholar
  34. Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 60:250–265PubMedGoogle Scholar
  35. Wickner RB, Leibowitz MJ (1976) Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: the killer character of yeast. J Mol Biol 105:427–434PubMedGoogle Scholar
  36. Zagulski M, Becam AM, Grzybowska E, Lacroute F, Migdalski A, Slonimski PP, Sokolowska B, Herbert CJ (1994) The sequence of 12.5 kb from the right arm of chromosome II predicts a new N-terminal sequence for the IRA1 protein and reveals two new genes, one of which is a DEAD-box helicase. Yeast 10:1227–1234PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Zagulski
    • 1
  • D. Kressler
    • 2
  • A.-M. Bécam
    • 3
  • J. Rytka
    • 1
  • C. J. Herbert
    • 3
  1. 1.Institute of Biochemistry and BiophysicsPolish National Academy of SciencesWarsawPoland
  2. 2.Département de Biochimie Médicale, Centre Médical UniversitaireUniversité de GenèveGenève 4Switzerland
  3. 3.Laboratoire propre du CNRS associé à l'Université Pierre et Marie CurieCentre de Génétique MoléculaireGif-sur-YvetteFrance

Personalised recommendations