Molecular Genetics and Genomics

, Volume 269, Issue 5, pp 715–722 | Cite as

An integrated physical and genetic map of the nematode Pristionchus pacificus

  • J. Srinivasan
  • W. Sinz
  • T. Jesse
  • L. Wiggers-Perebolte
  • K. Jansen
  • J. Buntjer
  • M. van der Meulen
  • R. J. Sommer
Original Paper

Abstract

The free-living nematode Pristionchus pacificus is one of several species that have recently been developed as a satellite system for comparative functional studies in evolutionary developmental biology. Comparisons of developmental processes between P. pacificus and the well established model organism Caenorhabditis elegans at the cellular and genetic levels provide detailed insight into the molecular changes that shape evolutionary transitions. To facilitate genetic analysis and cloning of mutations in P. pacificus, we previously generated a BAC-based genetic linkage map for this organism. Here, we describe the construction of a physical map of the P. pacificus genome based on AFLP fingerprint analysis of 7747 BAC clones. Most of the SSCP markers used to generate the genetic linkage map were derived from BAC ends, so that the physical genome map and the genetic map can be integrated. The contigs that make up the physical map are evenly distributed over the genetic linkage map and no clustering is observed, indicating that the physical map provides a valid representation of the P. pacificus genome. The integrated genome map thus provides a framework for positional cloning and the study of genome evolution in nematodes.

Keywords

Pristionchus pacificus  Caenorhabditis elegans Genomics Physical map Amplified fragment length polymorphism (AFLP) 

References

  1. Barnes TM, Kohara Y, Coulson A, Hekimi S (1995) Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics 141:159–179PubMedGoogle Scholar
  2. Cao Y, et al (1999) A 12-Mb complete coverage BAC contig map in human chromosome 16p13.1–p11.2. Genome Res 9:763–774PubMedGoogle Scholar
  3. Chen M, et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545PubMedGoogle Scholar
  4. Cone KC, et al (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605CrossRefPubMedGoogle Scholar
  5. Eizinger A, Sommer RJ (1997) The homeotic gene lin-39 and the evolution of nematode epidermal cell fates. Science 278:452–455CrossRefPubMedGoogle Scholar
  6. Eizinger A, Jungblut B, Sommer RJ (1999) Evolutionary change in the functional specificity of genes. Trends Genet 15:197–202CrossRefPubMedGoogle Scholar
  7. Felix MA, De Ley P, Sommer RJ, Frisse L, Nadler SA, Thomas WK, Vanfleteren J, Sternberg PW (2000) Evolution of vulva development in the Cephalobina (Nematoda). Dev Biol 221:68–86Google Scholar
  8. Jungblut BA, Sommer RJ (1998) The Pristionchus pacificus mab-5 gene is involved in the regulation of ventral epidermal cell fates. Curr Biol 8:775–778PubMedGoogle Scholar
  9. Jungblut B, Pires-daSilva A, Sommer RJ (2001) Formation of the egg-laying system in Pristionchus pacificus requires complex interactions between gonadal, mesodermal and epidermal tissues and does not rely on single cell inductions. Development 128:3395–3404PubMedGoogle Scholar
  10. Lee KZ, Eizinger A, Nandakumar R, Schuster SC, Sommer RJ (2003) Limited microsynteny between the genomes of Pristionchus pacificus and Caenorhabditis elegans. Nucleic Acids Res 31:2553–2560CrossRefPubMedGoogle Scholar
  11. Marra M, et al (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nat Genet 22:265–270CrossRefPubMedGoogle Scholar
  12. Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7:1072–1084PubMedGoogle Scholar
  13. Peichel CL, Nereng KS, Ohgi KA, Cole BL, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM (2001) The genetic architecture of divergence between threespine stickleback species. Nature 414:901–905CrossRefPubMedGoogle Scholar
  14. Pires-DaSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49.CrossRefPubMedGoogle Scholar
  15. Schlak I, Eizinger A, Sommer RJ (1997) High rate of restriction fragment length polymorphisms between two populations of the nematode Pristionchus pacificus (Diplogastridae). J Zool Syst Evol 35:137–142Google Scholar
  16. Simpson P (2002) Evolution of development in closely related species of flies and worms. Nat Rev Genet 3:907CrossRefPubMedGoogle Scholar
  17. Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. Comput Appl Biosci 13:523–535Google Scholar
  18. Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 10:1772–1787CrossRefPubMedGoogle Scholar
  19. Sommer RJ (2000) Evolution of nematode development. Curr Opin Genet Dev 10:443–448CrossRefPubMedGoogle Scholar
  20. Sommer RJ (2001) As good as they get: cells in nematode vulva development and evolution. Curr Opin Cell Biol 13:715–720CrossRefPubMedGoogle Scholar
  21. Sommer RJ, Sternberg PW (1996) Evolution of nematode vulval fate patterning. Dev Biol 173:396–407Google Scholar
  22. Sommer RJ, Carta LK, Seong-youn Kim A, Sternberg PW (1996) Morphological, genetic and molecular description of Pristionchus pacificus sp. n. (Nematoda: Neodiplogastridae). Fund Appl Nematol 19:511–521Google Scholar
  23. Sommer RJ, Eizinger A, Lee KZ, Jungblut B, Bubeck A, Schlak I (1998) The Pristionchus HOX gene Ppa-lin-39 inhibits programmed cell death to specify the vulva equivalence group and is not required during vulval induction. Development 125:3865–3873PubMedGoogle Scholar
  24. Srinivasan J, Pires-daSilva A, Gutierrez A, Zheng M, Jungblut B, Witte H, Schlak I, Sommer RJ (2001) Microevolutionary analysis of the nematode genus Pristionchus suggests a recent evolution of redundant developmental mechanisms during vulva formation. Evol Dev 3:229–240CrossRefPubMedGoogle Scholar
  25. Srinivasan J, et al (2002) A Bacterial Artificial Chromosome-based genetic linkage map of the nematode Pristionchus pacificus. Genetics 162:129–134PubMedGoogle Scholar
  26. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018PubMedGoogle Scholar
  27. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  28. Waterston RH, et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • J. Srinivasan
    • 1
  • W. Sinz
    • 1
  • T. Jesse
    • 2
  • L. Wiggers-Perebolte
    • 2
  • K. Jansen
    • 2
  • J. Buntjer
    • 2
  • M. van der Meulen
    • 2
  • R. J. Sommer
    • 1
  1. 1.Abteilung für EvolutionsbiologieMax-Planck Institut für EntwicklungsbiologieTübingenGermany
  2. 2.Keygene N.V.WageningenThe Netherlands

Personalised recommendations