Molecular Genetics and Genomics

, Volume 269, Issue 4, pp 499–507

ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds

  • L.-H. Zwiers
  • I. Stergiopoulos
  • M. M. C. Gielkens
  • S. D. Goodall
  • M. A. De Waard
Original Paper


We have studied the role of five ABC transporter genes ( MgAtr to MgAtr5) from the wheat pathogen Mycosphaerella graminicola in multidrug resistance (MDR). Complementation of Saccharomyces cerevisiae mutants with the ABC transporter genes from M. graminicola showed that all the genes tested encode proteins that provide protection against chemically unrelated compounds, indicating that their products function as multidrug transporters with distinct but overlapping substrate specificities. Their substrate range in yeast includes fungicides, plant metabolites, antibiotics, and a mycotoxin derived from Fusarium graminearum (diacetoxyscirpenol). Transformants of M. graminicola in which individual ABC transporter genes were deleted or disrupted did not exhibit clear-cut phenotypes, probably due to the functional redundancy of transporters with overlapping substrate specificity. Independently generated MgAtr5 deletion mutants of M. graminicola showed an increase in sensitivity to the putative wheat defence compound resorcinol and to the grape phytoalexin resveratrol, suggesting a role for this transporter in protecting the fungus against plant defence compounds. Bioassays with antagonistic bacteria indicated that MgAtr2 provides protection against metabolites produced by Pseudomonas fluorescens and Burkholderia cepacia. In summary, our results show that ABC transporters from M. graminicola play a role in protection against toxic compounds of natural and artificial origin.


Multidrug resistance ABC transporter  Mycosphaerella graminicola  Septoria tritici Antibiotic 


  1. Andrade AC, Del Sorbo G, van Nistelrooy JGM, De Waard MA (2000) The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997PubMedGoogle Scholar
  2. Burkhead K, Schisler D, Slininger P (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039Google Scholar
  3. Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Nat Prod 57:1200–5PubMedGoogle Scholar
  4. Christensen PU, Davey J, Nielsen O (1997) The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor. Mol Gen Genet 255:226–236CrossRefPubMedGoogle Scholar
  5. De Waard MA (1997) Significance of ABC transporters in fungicide sensitivity and resistance. Pestic Sci 51:271–275CrossRefGoogle Scholar
  6. Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145PubMedGoogle Scholar
  7. Decottignies A, Grant AM, Nichols JW, De Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622PubMedGoogle Scholar
  8. Del Sorbo G, Schoonbeek H, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15PubMedGoogle Scholar
  9. Fleissner A, Copalla C, Weltring K-M (2002) An ABC Multidrug-Resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Mol Plant-Microbe Interact 15:102–108Google Scholar
  10. Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57:921–930PubMedGoogle Scholar
  11. Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699PubMedGoogle Scholar
  12. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427PubMedGoogle Scholar
  13. Higgins CF (2001) ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 152:205–210CrossRefPubMedGoogle Scholar
  14. Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482Google Scholar
  15. Jeandet P, Bessis R, Sbaghi M, Meunier P (1995) Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J Phytopathol 143:135–139Google Scholar
  16. Kaur R, Bachhawat AK (1999) The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818PubMedGoogle Scholar
  17. Kema GHJ, Van Silfhout CH (1997) Genetic variation for virulence and resistance in the wheat- Mycosphaerella graminicola pathosystem. III. Comparative seedling and adult plant experiments. Phytopathology 87:266–272Google Scholar
  18. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307Google Scholar
  19. Kolaczkowski M, Goffeau A (1997) Active efflux by multidrug transporters as one of the strategies to evade chemotherapy and novel practical implications of yeast pleiotropic drug resistance. Pharmacol Therapeut 76:219–242CrossRefGoogle Scholar
  20. Kolaczkowski M, Kolaczkowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158PubMedGoogle Scholar
  21. Krishnamurthy SS, Prasad RU (1999) Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter of Candida albicans. FEMS Microbiol Lett 173:475–481CrossRefPubMedGoogle Scholar
  22. Levy E, Eyal Z, Carmely S, Kashman Y, Chet I (1989) Suppression of Septoria tritici and Puccinia recondita of wheat by an antibiotic-producing fluorescent pseudomonad. Plant Pathol 38:564–570Google Scholar
  23. Mahe Y, Lemoine Y, Kuchler K (1996) The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem 271:25167–25172Google Scholar
  24. McGrath JP, Varshavsky A (1989) The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340:400–404PubMedGoogle Scholar
  25. Melchers WJ, Verweij PE, Van den Hurk P, Van Belkum A, De Pauw BE, Hoogkamp Korstanje JA, Meis JF (1994) General primer-mediated PCR for detection of Aspergillus species. J Clin Microbiol 32:1710–1717PubMedGoogle Scholar
  26. Muhitch MJ, McCormick SP, Alexander NJ, Hohn TM (2000) Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. Plant Sci 157:201–207PubMedGoogle Scholar
  27. Nishi K, Yoshida M, Nishimura M, Nishikawa M, Nishiyama M, Horinouchi S, Beppu T (1992) A leptomycin B resistance gene of Schizosaccharomyces pombe encodes a protein similar to the mammalian P-glycoproteins. Mol Microbiol 6:761–769PubMedGoogle Scholar
  28. Payne AC, Grosjean-Cournoyer MC, Hollomon DW (1998) Transformation of the phytopathogen Mycosphaerella graminicola to carbendazim and hygromycin B resistance. Curr Genet 34:100–104CrossRefPubMedGoogle Scholar
  29. Rothenberg ML (1997) Topoisomerase I inhibitors: review and update. Ann Oncol 8:837–855CrossRefPubMedGoogle Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  31. Schoonbeek H, Del Sorbo G, De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant-Microbe Interact 14:562–571Google Scholar
  32. Schoonbeek H, Raaijmakers JM, De Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Mol Plant-Microbe Interact 15:1165–1172Google Scholar
  33. Seitz LM (1992) Identification of 5-(2-oxoalkyl)resorcinols and 5-(2-oxoalkenyl)resorcinols in wheat and rye grains. J Agr Food Chem 40:1541–1546Google Scholar
  34. Stergiopoulos I, Gielkens MMC, Goodall SD, Venema K, De Waard MA (2002a) Molecular cloning and characterisation of three new ABC transporter-encoding genes from the wheat pathogen Mycosphaerella graminicola. Gene 289:141–149CrossRefPubMedGoogle Scholar
  35. Stergiopoulos I, Zwiers L-H, De Waard MA (2002b) Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily. Eur J Plant Pathol 108:719–734CrossRefGoogle Scholar
  36. Stergiopoulos I, Zwiers L-H, De Waard MA (2003) The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol Plant-Microbe Interact (in press)Google Scholar
  37. Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5´-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA 97:1433–1437CrossRefPubMedGoogle Scholar
  38. Suzuki Y, Esumi Y, Hyakutake H, Kono Y, Sakurai A (1996) Isolation of 5-(8'Z-heptadecenyl)-resorcinol from etiolated rice seedlings as an antifungal agent. Phytochemistry 41:1485–1489CrossRefGoogle Scholar
  39. Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18:512–521PubMedGoogle Scholar
  40. Wilkes MA, Marshall DR, Copeland L (1999) Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biol Biochem 31:1831–1836CrossRefGoogle Scholar
  41. Zwiers L-H, De Waard MA (2000) Characterization of the ABC transporter genes MgAtr1 and MgAtr2 from the wheat pathogen Mycosphaerella graminicola. Fungal Genet Biol 30:115–125PubMedGoogle Scholar
  42. Zwiers L-H, De Waard MA (2001) Efficient Agrobacterium tumefaciens -mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393PubMedGoogle Scholar
  43. Zwiers L-H, Stergiopoulos I, Van Nistelrooy JGM, De Waard MA (2002) ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola. Antimicrob Agents Chemother 46:3900–3906CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • L.-H. Zwiers
    • 1
  • I. Stergiopoulos
    • 1
  • M. M. C. Gielkens
    • 1
    • 2
  • S. D. Goodall
    • 1
    • 3
  • M. A. De Waard
    • 1
  1. 1.Laboratory of Phytopathology, Department of Plant SciencesWageningen UniversityWageningen
  2. 2.National Institute for Public Health and the EnvironmentBilthovenThe Netherlands
  3. 3.Galton Laboratory, Department of BiologyUniversity College LondonLondonUK

Personalised recommendations