Advertisement

Metabolic requirements of Besnoitia besnoiti tachyzoite-triggered NETosis

  • Ershun ZhouEmail author
  • Iván Conejeros
  • Ulrich Gärtner
  • Sybille Mazurek
  • Carlos Hermosilla
  • Anja Taubert
Immunology and Host-Parasite Interactions - Original Paper
  • 24 Downloads

Abstract

Besnoitia besnoiti is the causative agent of bovine besnoitiosis, a disease affecting both, animal welfare and cattle productivity. NETosis represents an important and early host innate effector mechanism of polymorphonuclear neutrophils (PMN) that also acts against B. besnoiti tachyzoites. So far, no data are available on metabolic requirements of B. besnoiti tachyzoite-triggered NETosis. Therefore, here we analyzed metabolic signatures of tachyzoite-exposed PMN and determined the relevance of distinct PMN-derived metabolic pathways via pharmacological inhibition experiments. Overall, tachyzoite exposure induced a significant increase in glucose and serine consumption as well as glutamate production in PMN. Moreover, tachyzoite-induced cell-free NETs were significantly diminished via PMN pre-treatments with oxamate and dichloroacetate which both induce an inhibition of lactate release as well as oxythiamine, which inhibits pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase, thereby indicating a key role of pyruvate- and lactate-mediated metabolic pathways for proper tachyzoite-mediated NETosis. Furthermore, NETosis was increased by enhanced pH conditions; however, inhibitors of MCT-lactate transporters (AR-C141900, AR-C151858) failed to influence NET formation. Moreover, a significant reduction of tachyzoite-induced NET formation was also achieved by treatments with oligomycin A (inhibitor of ATP synthase) and NF449 (purinergic receptor P2X1 antagonist) thereby suggesting a pivotal role of ATP availability for tachyzoite-mediated NETosis. In summary, the current data provide first evidence on carbohydrate-related metabolic pathways and energy supply to be involved in B. besnoiti tachyzoite-induced NETosis.

Keywords

Besnoitia besnoiti PMN NETosis Metabolic signatures Glycolysis ATP 

Notes

Acknowledgments

The authors would like to acknowledge Anika Seipp (Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Germany) for her excellent assistance in processing samples for scanning electron microscopy analysis. Many thanks to Prof. Mazurek’s assistants Sandra Rühl and Bianca Kulik for their help in measuring metabolites and creating the metabolic scheme. We also want to thank to Hannah Salecker and Dr. Christin Ritter for the technical support in B. besnoiti cell culture. We further thank all staff members of JLU Gießen teaching and research station Oberer Hardthof.

Funding information

This research was funded by the German Research Foundation (Deutsche Forschungsgemeinsachaft, DFG, grant no. TA291/4-2). EZ is a recipient of a PhD fellowship from China Scholarship Council (file number: 201506170042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2019_6543_MOESM1_ESM.pdf (786 kb)
ESM 1 (PDF 785 kb)

References

  1. Ahlin A, Gyllenhammar H, Ringertz BO, Palmblad J (1995) Neutrophil membrane potential changes and homotypic aggregation kinetics are pH-dependent: studies of chronic granulomatous disease. J Lab Clin Med 125:392–401PubMedGoogle Scholar
  2. Amini P, Stojkov D, Felser A, Jackson CB, Courage C, Schaller A, Gelman L, Soriano ME, Nuoffer J-M, Scorrano L et al (2018) Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat Commun 9:2958PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aronsen L, Orvoll E, Lysaa R, Ravna AW, Sager G (2014) Modulation of high affinity ATP-dependent cyclic nucleotide transporters by specific and non-specific cyclic nucleotide phosphodiesterase inhibitors. Eur J Pharmacol 745:249–253PubMedCrossRefGoogle Scholar
  4. Baker VS, Imade GE, Molta NB, Tawde P, Pam SD, Obadofin MO, Sagay SA, Egah DZ, Iya D, Afolabi BB et al (2008) Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malar J 7:41PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bao Y, Ledderose C, Seier T, Graf AF, Brix B, Chong E, Junger WG (2014) Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. J Biol Chem 289:26794–26803PubMedPubMedCentralCrossRefGoogle Scholar
  6. Behnen M, Möller S, Brozek A, Klinger M, Laskay T (2017) Extracellular acidification inhibits the ROS-dependent formation of neutrophil extracellular traps. Front Immunol 8Google Scholar
  7. Behrendt JH, Taubert A, Zahner H, Hermosilla C (2008) Studies on synchronous egress of coccidian parasites (Neospora caninum, Toxoplasma gondii, Eimeria bovis) from bovine endothelial host cells mediated by calcium ionophore A23187. Vet Res Commun 32:325–332PubMedCrossRefGoogle Scholar
  8. Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermosilla C (2010) Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis. Vet Immunol Immunopathol 133:1–8PubMedCrossRefGoogle Scholar
  9. Besnoit C, Robin V (1912) Sarcosporidiose cutanée chez une vache. Revue Vétérinaire 37:649–663Google Scholar
  10. Bigalke, R. D., Prozesky, L., Coetzer, J. A. W. and Tustin, R. C. (2004). Infectious diseases of livestock.Google Scholar
  11. Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Invest 70:550–557PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brinkmann V (2018) Neutrophil extracellular traps in the second decade. JIN:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535CrossRefGoogle Scholar
  14. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cao S, Liu P, Zhu H, Gong H, Yao J, Sun Y, Geng G, Wang T, Feng S, Han M et al (2015) Extracellular acidification acts as a key modulator of neutrophil apoptosis and functions. PLoS One 10:e0137221PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen Y, Yao Y, Sumi Y, Li A, To, U. K., Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C et al (2010) Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal 3:ra45–ra45PubMedPubMedCentralGoogle Scholar
  18. Cortes H, Leitão A, Gottstein B, Hemphill A (2014) A review on bovine besnoitiosis: a disease with economic impact in herd health management, caused by Besnoitia besnoiti (Franco and Borges, ). Parasitology 141:1406–1417PubMedCrossRefPubMedCentralGoogle Scholar
  19. Craven N, Williams MR, Field TR, Bunch KJ, Mayer SJ, Bourne FJ (1986) The influence of extracellular and phagolysosomal pH changes on the bactericidal activity of bovine neutrophils against Staphylococcus aureus. Vet Immunol Immunopathol 13:97–110PubMedCrossRefGoogle Scholar
  20. Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M (2017) Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol 8Google Scholar
  21. Dhup S, Kumar Dadhich R, Ettore Porporato P, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330PubMedCrossRefGoogle Scholar
  22. DiStasi MR, Ley K (2009) Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol 30:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  23. European Food Safety Authority (2010) Bovine Besnoitiosis: an emerging disease in Europe. EFSA J 8Google Scholar
  24. Fossati G, Moulding DA, Spiller DG, Moots RJ, White MRH, Edwards SW (2003) The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J Immunol 170:1964–1972PubMedCrossRefGoogle Scholar
  25. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gabig TG, Bearman SI, Babior BM (1979) Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood 53:1133–1139PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gonzalez AS, Bardoel BW, Harbort CJ, Zychlinsky A (2014) Induction and quantification of neutrophil extracellular traps. Methods Mol Biol 1124:307–318PubMedCrossRefPubMedCentralGoogle Scholar
  28. Grassi F (2010) Purinergic control of neutrophil activation. J Mol Cell Biol 2:176–177PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hahn, S., Giaglis, S., Chowdury, C. S., Hösli, I. and Hasler, P. (2013). Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. In Seminars in immunopathology, pp. 439–453. Springer.Google Scholar
  30. Halestrap AP (2012) The monocarboxylate transporter family-structure and functional characterization. IUBMB Life 64:1–9PubMedCrossRefGoogle Scholar
  31. Halestrap AP (2013) The SLC16 gene family—structure, role and regulation in health and disease. Mol Asp Med 34:337–349CrossRefGoogle Scholar
  32. Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5:75–89PubMedCrossRefPubMedCentralGoogle Scholar
  33. Jacquiet P, Liénard E, Franc M (2010) Bovine besnoitiosis: epidemiological and clinical aspects. Vet Parasitol 174:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  34. Karmakar M, Katsnelson MA, Dubyak GR, Pearlman E (2016) Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat Commun 7Google Scholar
  35. Kellum, J. A., Song, M. and Li, J. (2004). Science review: extracellular acidosis and the immune response: clinical and physiologic implications. 8, 6.Google Scholar
  36. Lacy P (2006) Mechanisms of degranulation in neutrophils. Allergy, Asthma Clin Immunol 2:98–108CrossRefGoogle Scholar
  37. Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530PubMedGoogle Scholar
  38. Leblebicioglu B, Lim JS, Cario AC, Beck FM, Walters JD (1996) pH changes observed in the inflamed gingival crevice modulate human polymorphonuclear leukocyte activation in vitro. J Periodontol 67:472–477PubMedCrossRefGoogle Scholar
  39. Li S, Hao B, Lu Y, Yu P, Lee H-C, Yue J (2012) Intracellular alkalinization induces cytosolic Ca2+ increases by inhibiting sarco/endoplasmic reticulum Ca2 + -ATPase (SERCA). PLoS One 7Google Scholar
  40. Maianski NA, Geissler J, Srinivasula SM, Alnemri ES, Roos D, Kuijpers TW (2004) Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ 11:143PubMedCrossRefGoogle Scholar
  41. Maksimov P, Hermosilla C, Kleinertz S, Hirzmann J, Taubert A (2016) Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition. Parasitol Res 115:1991–2001PubMedCrossRefGoogle Scholar
  42. Malayev A, Nelson DJ (1995) Extracellular pH modulates the Ca 2+ current activated by depletion of intracellular Ca 2+ stores in human macrophages. J Membr Biol 146:101–111PubMedCrossRefGoogle Scholar
  43. Maqbool MS, Bhat SA, Shah SN, Ganayi BA, Sheikh TA (2012) Bovine Besnoitiosis-impact on profitable cattle production. International Journal of Livestock Research 2:78–81CrossRefGoogle Scholar
  44. Maueröder C, Mahajan A, Paulus S, Gößwein S, Hahn J, Kienhöfer D, Biermann MH, Tripal P, Friedrich RP, Munoz LE et al (2016) Ménage-à-Trois: the ratio of bicarbonate to CO2 and the pH regulate the capacity of neutrophils to form NETs. Front Immunol 7Google Scholar
  45. Mazurek S, Michel A, Eigenbrodt E (1997) Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. J Biol Chem 272:4941–4952PubMedCrossRefGoogle Scholar
  46. Merezhinskaya N, Ogunwuyi SA, Mullick FG, Fishbein WN (2004) Presence and localization of three lactic acid transporters (MCT1, −2, and −4) in separated human granulocytes, lymphocytes, and monocytes. J Histochem Cytochem 52:1483–1493PubMedPubMedCentralCrossRefGoogle Scholar
  47. Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A (2011) Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117:953–959PubMedPubMedCentralCrossRefGoogle Scholar
  48. Muñoz-Caro T, Hermosilla C, Silva LMR, Cortes H, Taubert A, Kaltenboeck B (2014) Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnoiti. PLoS ONE 9 (3):e91415.  https://doi.org/10.1371/journal.pone.0091415.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Muñoz-Caro T, Conejeros I, Zhou E, Pikhovych A, Gärtner U, Hermosilla C, Kulke D, Taubert A (2018) Dirofilaria immitis Microfilariae and third-stage larvae induce canine NETosis resulting in different types of neutrophil extracellular traps. Front Immunol 9Google Scholar
  50. Naffah de Souza C, Breda LCD, Khan MA, de Almeida SR, Câmara NOS, Sweezey N, Palaniyar N (2018) Alkaline pH Promotes NADPH oxidase-independent neutrophil extracellular trap formation: a matter of mitochondrial reactive oxygen species generation and citrullination and cleavage of histone. Front Immunol 8Google Scholar
  51. Nahas GG, Tannieres ML, Lennon JF (1971) Direct measurement of leukocyte motility: effects of pH and temperature. Proc Soc Exp Biol Med 138:350–352PubMedCrossRefPubMedCentralGoogle Scholar
  52. Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H (2015) Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett 167:72–86PubMedCrossRefPubMedCentralGoogle Scholar
  53. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182PubMedCrossRefPubMedCentralGoogle Scholar
  54. Nayak MK, Dhanesha N, Doddapattar P, Rodriguez O, Sonkar VK, Dayal S, Chauhan AK (2018) Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis. Blood Advances 2:2029–2038PubMedPubMedCentralCrossRefGoogle Scholar
  55. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691PubMedPubMedCentralCrossRefGoogle Scholar
  56. Parker H, Winterbourn C (2013) Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 3Google Scholar
  57. Pinheiro, C., Reis, R. M., Ricardo, S., Longatto-Filho, A., Schmitt, F. and Baltazar, F. (2010). Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. BioMed Research International.Google Scholar
  58. Rabinovich M, DeStefano MJ, Dziezanowski MA (1980) Neutrophil migration under agarose: stimulation by lowered medium pH and osmolality. J Reticuloendothel Soc 27:189PubMedPubMedCentralGoogle Scholar
  59. Rada B, Jendrysik MA, Pang L, Hayes CP, Yoo D, Park JJ, Moskowitz SM, Malech HL, Leto TL (2013) Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One 8:e54205PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ratter JM, Rooijackers HMM, Hooiveld GJ, Hijmans AGM, de Galan BE, Tack CJ, Stienstra R (2018) In vitro and in vivo effects of lactate on metabolism and cytokine production of human primary PBMCs and monocytes. Front Immunol 9Google Scholar
  61. Riemann A, Ihling A, Thomas J, Schneider B, Thews O, Gekle M (2015) Acidic environment activates inflammatory programs in fibroblasts via a cAMP–MAPK pathway. Biochim Biophys Acta (BBA) - Mol Cell Res 1853:299–307CrossRefGoogle Scholar
  62. Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MMB, López-Villegas EO, Sánchez-García FJ (2015) Metabolic requirements for neutrophil extracellular traps formation. Immunology 145:213–224PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ralevic V, Burnstock G (1998) Receptors for Purines and Pyrimidines. Pharmacological Reviews 50(3):413–92.Google Scholar
  64. Seliger C, Leukel P, Moeckel S, Jachnik B, Lottaz C, Kreutz M, Brawanski A, Proescholdt M, Bogdahn U, Bosserhoff A-K et al (2013) Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS One 8:e78935PubMedPubMedCentralCrossRefGoogle Scholar
  65. Sil P, Hayes CP, Reaves BJ, Breen P, Quinn S, Sokolove J, Rada B (2017) P2Y6 Receptor antagonist MRS2578 inhibits neutrophil activation and aggregated neutrophil extracellular trap formation induced by gout-associated monosodium urate crystals. J Immunol 198:428–442PubMedCrossRefGoogle Scholar
  66. Silva LMR, Muñoz-Caro T, Burgos RA, Hidalgo MA, Taubert A, Hermosilla C (2016) Far beyond phagocytosis: phagocyte-derived extracellular traps act efficiently against protozoan parasites in vitro and in vivo. Mediat InflammGoogle Scholar
  67. Simchowitz, L. (1985). Intracellular pH modulates the generation of superoxide radicals by human neutrophils.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Tanaka K, Koike Y, Shimura T, Okigami M, Ide S, Toiyama Y, Okugawa Y, Inoue Y, Araki T, Uchida K et al (2014) In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS One 9:e111888PubMedPubMedCentralCrossRefGoogle Scholar
  69. Taubert A, Hermosilla C, Silva LMR, Wieck A, Failing K, Mazurek S (2016) Metabolic signatures of Besnoitia besnoiti-infected endothelial host cells and blockage of key metabolic pathways indicate high glycolytic and glutaminolytic needs of the parasite. Parasitol Res 115:2023–2034PubMedCrossRefGoogle Scholar
  70. Trevani AS, Andonegui G, Giordano M, López DH, Gamberale R, Minucci F, Geffner JR (1999) Extracellular acidification induces human neutrophil activation. J Immunol 162:4849–4857PubMedGoogle Scholar
  71. Tweedy, L., Knecht, D. A., Mackay, G. M. and Insall, R. H. (2016). Self-generated chemoattractant gradients: attractant depletion extends the range and robustness of chemotaxis. PLoS Biol 14,.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Tylicki A, Czerniecki J, Dobrzyn P, Matanowska A, Olechno A, Strumilo S (2005) Modification of thiamine pyrophosphate dependent enzyme activity by oxythiamine in Saccharomyces cerevisiae cells. Can J Microbiol 51:833–839PubMedCrossRefGoogle Scholar
  73. Vaughan KR, Stokes L, Prince LR, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MKB (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol 179:8544–8553PubMedPubMedCentralCrossRefGoogle Scholar
  74. Villagra-Blanco R, Silva LMR, Muñoz-Caro T, Yang Z, Li J, Gärtner U, Taubert A, Zhang X, Hermosilla C (2017) Bovine polymorphonuclear neutrophils cast neutrophil extracellular traps against the abortive parasite Neospora caninum. Front Immunol 8Google Scholar
  75. Villagra-Blanco R, Silva LMR, Conejeros I, Taubert A, Hermosilla C (2019) Pinniped- and Cetacean-derived ETosis contributes to combating emerging apicomplexan parasites (Toxoplasma gondii, Neospora caninum) circulating in marine environments. Biology 8:12PubMedCentralCrossRefGoogle Scholar
  76. Wang X, Chen D (2018) Purinergic regulation of neutrophil function. Front Immunol 9Google Scholar
  77. Wang J, Zhang X, Ma D, Lee W-NP, Xiao J, Zhao Y, Go VL, Wang Q, Yen Y, Recker R et al (2013) Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Exp Hematol Oncol 2:18PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wang X, Qin W, Xu X, Xiong Y, Zhang Y, Zhang H, Sun B (2017) Endotoxin-induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation. Proc Natl Acad Sci U S A 114:4483–4488PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wu C-Y, Satapati S, Gui W, Wynn RM, Sharma G, Lou M, Qi X, Burgess SC, Malloy C, Khemtong C et al (2018) A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity. J Biol Chem 293:9604–9613PubMedPubMedCentralCrossRefGoogle Scholar
  80. Zhou E, Conejeros I, Velásquez ZD, Muñoz-Caro T, Gärtner U, Hermosilla C, Taubert A (2019) Simultaneous and positively correlated NET formation and autophagy in Besnoitia besnoiti tachyzoite-exposed bovine polymorphonuclear neutrophils. Front Immunol 10:1131PubMedPubMedCentralCrossRefGoogle Scholar
  81. Zigmond SH, Hargrove RL (1981) Orientation of PMN in a pH gradient: acid-induced release of a chemotactic factor. J Immunol 126:478–481PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ershun Zhou
    • 1
    Email author
  • Iván Conejeros
    • 1
  • Ulrich Gärtner
    • 2
  • Sybille Mazurek
    • 3
  • Carlos Hermosilla
    • 1
  • Anja Taubert
    • 1
  1. 1.Institute of Parasitology, Biomedical Research Center SeltersbergJustus Liebig University GiessenGiessenGermany
  2. 2.Institute of Anatomy and Cell BiologyJustus Liebig University GiessenGiessenGermany
  3. 3.Institute of Veterinary Physiology and BiochemistryJustus Liebig University GiessenGiessenGermany

Personalised recommendations