Parasitology Research

, Volume 118, Issue 12, pp 3387–3398 | Cite as

Screening and verification for proteins that interact with leucine aminopeptidase of Taenia pisiformis using a yeast two-hybrid system

  • Shaohua ZhangEmail author
Helminthology - Original Paper


Leucine aminopeptidase of Taenia pisiformis (TpLAP) belonging to the M17 peptidase family has been implicated as a stage-differentially expressed protein in the adult stage of T. pisiformis. In order to further dissect the biological functions of TpLAP in the growth and development of adult worms, TpLAP-interacting partners were investigated. In this study, a yeast two-hybrid (Y2H) cDNA library from adult T. pisiformis was constructed. Using pGBKT7-TpLAP as bait, proteins interacting with TpLAP were screened by Y2H system and positive preys were sequenced and analyzed using the Basic Local Alignment Search Tool (BLAST). Our results showed that six genuine TpLAP-interacting proteins, including LAP, dynein light chain (DLC), SUMO-conjugating enzyme (UBC9), histone-lysine n-methyltransferase, trans-acting transcriptional, and one unknown protein, were identified via Y2H assay. Furthermore, the interaction between TpLAP and UBC9 of T. pisiformis (TpUBC9), an important protein involved in SUMOylation pathway, was further validated by one-to-one Y2H assay, co-immunoprecipitation, and confocal analysis. These findings provide a deeper understanding of the biological functions of TpLAP and offer the first clue that TpLAP may act as a novel SUMOylated substrate, suggesting that the SUMO modification pathway plays an important role in regulation of adult worm growth and development.


Taenia pisiformis Yeast two-hybrid Interacting proteins TpLAP TpUBC9 Co-immunoprecipitation 



The author thanks Dr. Xuenong Luo and other members of our laboratory for their help in performing experiments, and Dr. Xuepeng Cai for fruitful advice during the course of the work and critical reading of this manuscript. Shanghai OE Biotech Co., Ltd. (Shanghai, P.R. China) is thanked for technical assistance.

Funding information

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 31772726) and the National Key Research and Development Program of China (No. 2017YFD0501303 and No. 2017YFC1601206).

Compliance with ethical standards

Conflicts of interest

The author declares that no competing interests exist.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Supplementary material

436_2019_6510_MOESM1_ESM.pdf (51 kb)
Fig. S1 The complete ORF sequence of TpUBC9 (PDF 50 kb)


  1. Baron DM, Kabututu ZP, Hill KL (2007) Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci 120(Pt 9):1513–1520. CrossRefPubMedGoogle Scholar
  2. Broday L (2017) The SUMO system in Caenorhabditis elegans development. Int J Dev Biol 61(3-4-5):159–164. CrossRefPubMedGoogle Scholar
  3. Buro C, Burmeister C, Quack T, Grevelding CG (2017) Identification and first characterization of SmEps8, a potential interaction partner of SmTK3 and SER transcribed in the gonads of Schistosoma mansoni. Exp Parasitol 180:55–63. CrossRefPubMedGoogle Scholar
  4. Daher W, Pierrot C, Kalamou H, Pinder JC, Margos G, Dive D, Franke-Fayard B, Janse CJ, Khalife J (2010) Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development. J Biol Chem 285(26):20180–20191. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Deyrieux AF, Wilson VG (2017) Sumoylation in development and differentiation. Adv Exp Med Biol 963:197–214. CrossRefPubMedGoogle Scholar
  6. Eifler K, Vertegaal AC (2015) Mapping the SUMOylated landscape. FEBS J 282(19):3669–3680. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Epps JL, Tanda S (1998) The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Curr Biol: CB 8(23):1277–1280CrossRefGoogle Scholar
  8. Hays T, Karess R (2000) Swallowing dynein: a missing link in RNA localization? Nat Cell Biol 2(4):E60–E62. CrossRefPubMedGoogle Scholar
  9. Heun P (2007) SUMOrganization of the nucleus. Curr Opin Cell Biol 19(3):350–355. CrossRefPubMedGoogle Scholar
  10. Jaffrey SR, Snyder SH (1996) PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science (New York, NY) 274(5288):774–777CrossRefGoogle Scholar
  11. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382. CrossRefPubMedGoogle Scholar
  12. Jones D, Crowe E, Stevens TA, Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3(1):Research0002PubMedGoogle Scholar
  13. Kamal A, Goldstein LS (2002) Principles of cargo attachment to cytoplasmic motor proteins. Curr Opin Cell Biol 14(1):63–68CrossRefGoogle Scholar
  14. Kim JK, Natarajan S, Park H, Huynh KH, Lee SH, Kim JG, Ahn Y.J, Kang LW (2013) Crystal structure of XoLAP, a leucine aminopeptidase, from Xanthomonas oryzae pv. oryzae. J Microbiol (Seoul, Korea) 51(5):627-632. doi: CrossRefGoogle Scholar
  15. Kirkham JK, Park SH, Nguyen TN, Lee JH, Gunzl A (2016) Dynein light chain LC8 is required for RNA polymerase I-mediated transcription in Trypanosoma brucei, facilitating assembly and promoter binding of class I transcription factor A. Mol Cell Biol 36(1):95–107. CrossRefPubMedGoogle Scholar
  16. Korrodi-Gregorio L, Vieira SI, Esteves SL, Silva JV, Freitas MJ, Brauns AK, Luers G, Abrantes J, Esteves P.J, da Cruz ESOA, Fardilha M, da Cruz ESEF (2013) TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network. Biol Open 2(5):453-465. doi: CrossRefGoogle Scholar
  17. Kuehn MR (2005) Mouse Ubc9 knockout: many path(way)s to ruin. Dev Cell 9(6):727–728. CrossRefPubMedGoogle Scholar
  18. Lai HT, Chiang CM (2013) Bimolecular fluorescence complementation (BiFC) assay for direct visualization of protein-protein interaction in vivo. Bio-protocol 3(20).
  19. Lee YR, Na BK, Moon EK, Song SM, Joo SY, Kong HH, Goo YK, Chung DI, Hong Y (2015) Essential role for an M17 leucine aminopeptidase in encystation of Acanthamoeba castellanii. PLoS One 10(6):e0129884. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li AH, Moon SU, Park YK, Na BK, Hwang MG, Oh CM, Cho SH, Kong Y, Kim TS, Chung PR (2006) Identification and characterization of a cathepsin L-like cysteine protease from Taenia solium metacestode. Vet Parasitol 141(3-4):251–259. CrossRefPubMedGoogle Scholar
  21. Li W, Yi P, Ou G (2015) Somatic CRISPR-Cas9-induced mutations reveal roles of embryonically essential dynein chains in Caenorhabditis elegans cilia. J Cell Biol 208(6):683–692. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lin JS, Lai EM (2017) Protein-protein interactions: co-immunoprecipitation. Methods Mol Biol (Clifton, NJ) 1615:211–219. CrossRefGoogle Scholar
  23. Loos-Frank B (2000) An up-date of Verster’s (1969) ‘Taxonomic revision of the genus Taenia Linnaeus’ (Cestoda) in table format. Syst Parasitol 45(3):155–183CrossRefGoogle Scholar
  24. Louche A, Salcedo SP, Bigot S (2017) Protein-protein interactions: pull-down assays. Methods Mol Biol (Clifton, NJ) 1615:247–255. CrossRefGoogle Scholar
  25. Lu J, Sun Q, Chen X, Wang H, Hu Y, Gu J (2005) Identification of dynein light chain 2 as an interaction partner of p21-activated kinase 1. Biochem Biophys Res Commun 331(1):153–158. CrossRefPubMedGoogle Scholar
  26. McCarthy E, Stack C, Donnelly SM, Doyle S, Mann VH, Brindley PJ, Stewart M, Day TA, Maule AG, Dalton JP (2004) Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int J Parasitol 34(6):703–714. CrossRefPubMedGoogle Scholar
  27. McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M (2006) Proteases in parasitic diseases. Annu Rev Pathol 1:497–536. CrossRefPubMedGoogle Scholar
  28. Monteiro KM, Lorenzatto KR, de Lima JC, Dos Santos GB, Forster S, Paludo GP, Carvalho PC, Brehm K, Ferreira HB (2017) Comparative proteomics of hydatid fluids from two Echinococcus multilocularis isolates. J Proteome 162:40–51. CrossRefGoogle Scholar
  29. Moore B (2004) Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci 9(5):221–228. CrossRefPubMedGoogle Scholar
  30. Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9(6):769–779. CrossRefPubMedGoogle Scholar
  31. Paiano A, Margiotta A, De Luca M, Bucci C (2018) Yeast two-hybrid assay to identify interacting proteins. Curr Protoc Protein Sci, e70. CrossRefGoogle Scholar
  32. Pichler A, Fatouros C, Lee H, Eisenhardt N (2017) SUMO conjugation—a mechanistic view. Biomol Concepts 8(1):13–36. CrossRefPubMedGoogle Scholar
  33. Rascon AA Jr, McKerrow JH (2013) Synthetic and natural protease inhibitors provide insights into parasite development, virulence and pathogenesis. Curr Med Chem 20(25):3078–3102CrossRefGoogle Scholar
  34. Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228CrossRefGoogle Scholar
  35. Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34(Database issue):D270–D272. CrossRefPubMedGoogle Scholar
  36. Reijns M, Lu Y, Leach S, Colloms SD (2005) Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 57(4):927–941. CrossRefPubMedGoogle Scholar
  37. Roy Chowdhuri S, Crum T, Woollard A, Aslam S, Okkema PG (2006) The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. Dev Biol 295(2):664–677. CrossRefPubMedGoogle Scholar
  38. Sako Y, Yamasaki H, Nakaya K, Nakao M, Ito A (2007) Cloning and characterization of cathepsin L-like peptidases of Echinococcus multilocularis metacestodes. Mol Biochem Parasitol 154(2):181–189. CrossRefPubMedGoogle Scholar
  39. Smith M, Turki-Judeh W, Courey AJ (2012) SUMOylation in Drosophila development. Biomolecules 2(3):331–349. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stack CM, Lowther J, Cunningham E, Donnelly S, Gardiner DL, Trenholme KR, Skinner-Adams TS, Teuscher F, Grembecka J, Mucha A, Kafarski P, Lua L, Bell A, Dalton JP (2007) Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J Biol Chem 282(3):2069–2080. CrossRefPubMedGoogle Scholar
  41. Tahmasebi S, Ghorbani M, Savage P, Gocevski G, Yang XJ (2014) The SUMO conjugating enzyme Ubc9 is required for inducing and maintaining stem cell pluripotency. Stem cells (Dayton, Ohio) 32(4):1012–1020. CrossRefGoogle Scholar
  42. Takahashi Y (2015) Co-immunoprecipitation from transfected cells. Methods Mol Biol (Clifton, NJ) 1278:381–389. CrossRefGoogle Scholar
  43. Toral-Bastida E, Garza-Rodriguez A, Jimenez-Gonzalez DE, Garcia-Cortes R, Avila-Ramirez G, Maravilla P, Flisser A (2011) Development of Taenia pisiformis in golden hamster (Mesocricetus auratus). Parasit Vectors 4:147. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tsubokawa D, Hatta T, Maeda H, Mikami F, Goso Y, Nakamura T, Alim MA, Tsuji N (2017) A cysteine protease from Spirometra erinaceieuropaei plerocercoid is a critical factor for host tissue invasion and migration. Acta Trop 167:99–107. CrossRefPubMedGoogle Scholar
  45. Victor B, Kanobana K, Gabriel S, Polman K, Deckers N, Dorny P, Deelder AM, Palmblad M (2012) Proteomic analysis of Taenia solium metacestode excretion-secretion proteins. Proteomics 12(11):1860–1869. CrossRefPubMedGoogle Scholar
  46. Wagemans J, Lavigne R (2015) Identification of protein-protein interactions by standard gal4p-based yeast two-hybrid screening. Methods Mol Biol (Clifton, NJ) 1278:409–431. CrossRefGoogle Scholar
  47. Wang Y, Fang R, Yuan Y, Pan M, Hu M, Zhou Y, Shen B, Zhao J (2016) Identification of host proteins, Spata3 and Dkk2, interacting with Toxoplasma gondii micronemal protein MIC3. Parasitol Res 115(7):2825–2835. CrossRefPubMedGoogle Scholar
  48. White AC Jr, Baig S, Robinson P (1996) Taenia saginata oncosphere excretory/secretory peptidases. J Parasitol 82(1):7–10CrossRefGoogle Scholar
  49. Wilson VG (2017) Introduction to sumoylation. Adv Exp Med Biol 963:1–12. CrossRefPubMedGoogle Scholar
  50. Woolwine SC, Sprinkle AB, Wozniak DJ (2001) Loss of Pseudomonas aeruginosa PhpA aminopeptidase activity results in increased algD transcription. J Bacteriol 183(15):4674–4679. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yang Y, Wen Y, Cai YN, Vallee I, Boireau P, Liu MY, Cheng SP (2015) Serine proteases of parasitic helminths. Korean J Parasitol 53(1):1–11. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang S, Cai X, Luo X, Wang S, Guo A, Hou J, Wu R (2018) Molecular cloning and characterization of leucine aminopeptidase gene from Taenia pisiformis. Exp Parasitol 186:1–9. CrossRefPubMedGoogle Scholar
  53. Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G, Zhu Y, Wang Y, Huang Y, Liu J, Kang H, Chen J, Wang L, Chen A, Yu S, Gao Z, Jin L, Gu W, Wang Z, Zhao L, Shi B, Wen H, Lin R, Jones MK, Brejova B, Vinar T, Zhao G, McManus DP, Chen Z, Zhou Y, Wang S (2013) The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet 45(10):1168–1175. CrossRefPubMedGoogle Scholar
  54. Zimic MJ, Infantes J, Lopez C, Velasquez J, Farfan M, Pajuelo M, Sheen P, Verastegui M, Gonzalez A, Garcia HH, Gilman RH (2007) Comparison of the peptidase activity in the oncosphere excretory/secretory products of Taenia solium and Taenia saginata. J Parasitol 93(4):727–734. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhouPeople’s Republic of China

Personalised recommendations