Advertisement

Are glial cells of the Digenea (Platyhelminthes) muscle cells?

  • Larisa G. PoddubnayaEmail author
  • David I. Gibson
Fish Parasitology - Short Communication

Abstract

Muscle cells of a digenean fish blood fluke, Aporocotyle simplex, aggregate along the periphery of the cerebral ganglia. Solitary myocytons and sarcoplasmic processes with muscle fibres give rise to long, narrow lamellate projections, which are visible along the periphery and within ganglia. These ultrastructural observations suggest a switching of glial functions to muscle cells and represent additional evidence of the phylogenetic lability of glial cells in bilaterians.

Keywords

Basal taxon Ultrastructure Aporocotyle Nervous system  Glia-like cells 

Notes

References

  1. Abbas MK, Cain GD (1987) Actin and intermediate-sized filaments of the spines and cytoskeleton of Schistosoma mansoni. Parasitol Res 73:66–74.  https://doi.org/10.1007/bf00536338 CrossRefPubMedGoogle Scholar
  2. Biserova NM (2016) Platyhelminthes: Neodermata. In: Schmidt-Rhaesa A, Harzsch A, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 93–117Google Scholar
  3. Conn DB (1988) The role of cellular parenchyma and extracellular matrix in the histogenesis of the paruterine organ of Mesocestoides lineatus (Platyhelminthes: Cestoda). J Morphol 197:2013–2314.  https://doi.org/10.1002/jmor.1051970305 CrossRefGoogle Scholar
  4. Conn DB (1993) The biology of flatworms (Platyhelminthes): parenchyma cells and extracellular matrices. Trans Am Microsc Soc 112:241–261.  https://doi.org/10.2307/3226561 CrossRefGoogle Scholar
  5. Cribb TH, Chick RC, O’Connor W, O’Connor S, Johnson D, Sewell KB, Cutmore SC (2017) Evidence that blood flukes (Trematoda: Aporocotylidae) of chondrichthyans infect bivalves as intermediate hosts: indications of an ancient diversification of the Schistosomatoidea. Int J Parasitol 47:885–891.  https://doi.org/10.1016/j.ijpara.2017.05.008 CrossRefPubMedGoogle Scholar
  6. Ehlers U (1995) The basic organization of the Plathelminthes. Hydrobiologia 305:21–26.  https://doi.org/10.1007/bf00036358 CrossRefGoogle Scholar
  7. Hartline DK (2011) The evolutionary origins of glia. Glia 59:1215–1236.  https://doi.org/10.1002/glia.21149 CrossRefPubMedGoogle Scholar
  8. Helm C, Karl A, Beckers P, Kaul-Strehlow S, Ulbricht E, Kourtesis I, Kuhrt H, Hausen HT, Reichenbach A, Bleidorn C (2017) Early evolution of radial glial cells in Bilateria. Proc R Soc B Biol Sci 284(1859):20170743.  https://doi.org/10.1098/rspb.2017.0743 CrossRefGoogle Scholar
  9. Koopowitz H, Chien P (1974) Ultrastructure of the nerve plexus in flatworms. I. Peripheral organization. Cell Tissue Res 155:337–351.  https://doi.org/10.1007/bf00222810 CrossRefPubMedGoogle Scholar
  10. Korneva JV, Kornienko SA, Jones MK (2016) Fine structure of uterus and non-functioning paruterine organ in Orthoskrjabinia junlanae (Cestoda, Cyclophyllidea). Parasitol Res 115:2449–2457.  https://doi.org/10.1007/s00436-016-4997-2 CrossRefPubMedGoogle Scholar
  11. Leksomboon R, Jones MK, Chaijaroonkhanarak W, Chaiwong T, Khrongyut S, Sripa B (2012) The ultrastructure of the brain of adult liver fluke, Opisthorchis viverrini. Int J Parasitol Res 4:90–93.  https://doi.org/10.9735/0975-3702.4.2.90-93 CrossRefGoogle Scholar
  12. Morita M (1965) Electron microscopic studies on planaria I. Fine structure of muscle fibers in the head of the planarian Dugesia dorotocephala. J Ultrastruct Res 13:383–395.  https://doi.org/10.1016/s0022-5320(65)90002-x CrossRefPubMedGoogle Scholar
  13. Morris J, Cardona A, De Miguel-Bonet M, Hartenstein V (2007) Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile. Dev Genes Evol 217:569–584.  https://doi.org/10.1007/s00427-007-0166-z CrossRefPubMedGoogle Scholar
  14. Pedersen KJ (1983) Fine structural observations on the turbellarians Stenostomum sp. and Microstomum lineare with special reference to the extracellular matrix and connective tissue systems. Acta Zool 64:177–190CrossRefGoogle Scholar
  15. Poddubnaya LG, Mackiewicz JS, Bruňanská M, Dezfuli BS (2005) Fine structure of the male reproductive ducts, vagina and seminal receptacle of Cyathocephalus truncatus (Cestoda: Spathebothriidea). Folia Parasitol 52:241–250.  https://doi.org/10.14411/fp.2005.032 CrossRefPubMedGoogle Scholar
  16. Radojcic T, Pentreath VW (1979) Invertebrate glia. Prog Neurobiol 12:115–179.  https://doi.org/10.1016/0301-0082(79)90002-9 CrossRefPubMedGoogle Scholar
  17. Reuter M, Halton DW (2001) Comparative neurobiology of Platyhelminthes. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, London, pp 239–249Google Scholar
  18. Stitt AW, Fairweather I, Trudgett CF, Anderson SML (1992) Localization of actin in the liver fluke, Fasciola hepatica. Parasitol Res 78:96–102.  https://doi.org/10.1007/bf00931648 CrossRefPubMedGoogle Scholar
  19. Sukhdeo MVK, Sukhdeo SC (1994) Mesenchyme cells in Fasciola hepatica (Platyhelminthes): primitive glia? Tissue Cell 26:123–131.  https://doi.org/10.1016/0040-8166(94)90088-4 CrossRefPubMedGoogle Scholar
  20. Świderski Z, Tkach V (1997) Differentiation and ultrastructure of the paruterine organs and paruterine capsules, in the nematotaeniid cestode Nematotaenia dispar (Goeze, 1782) Lühe, 1910, a parasite of amphibians. Int J Parasitol 27:635–644.  https://doi.org/10.1016/s0020-7519(96)00185-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.I. D. Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia
  2. 2.Department of Life SciencesNatural History MuseumLondonUK

Personalised recommendations