Advertisement

Parasitology Research

, Volume 118, Issue 12, pp 3377–3386 | Cite as

Secreted cathepsin L-like peptidases are involved in the degradation of trapped antibodies on the surface of Echinostoma caproni

  • Alba Cortés
  • Libor Mikeš
  • Carla Muñoz-Antolí
  • María Álvarez-Izquierdo
  • J. Guillermo Esteban
  • Petr Horák
  • Rafael ToledoEmail author
Helminthology - Original Paper
  • 41 Downloads

Abstract

Antibody trapping is a recently described strategy for immune evasion observed in the intestinal trematode Echinostoma caproni, which may aid to avoiding the host humoral response, thus facilitating parasite survival in the presence of high levels of local-specific antibodies. Parasite-derived peptidases carry out the degradation of trapped antibodies, being essential for this mechanism. Herein, we show that cathepsin-like cysteine endopeptidases are active in the excretory/secretory products (ESPs) of E. caproni and play an important role in the context of antibody trapping. Cysteine endopeptidase activity was detected in the ESPs of E. caproni adults. The affinity probe DCG-04 distinguished a cysteine peptidase band in ESPs, which was specifically recognized by an anti-cathepsin L heterologous antibody. The same antibody localized this protein in the gut and syncytial tegument of adult worms. Studies with cultured parasites showed that in vivo-bound antibodies are removed from the parasite surface in the absence of peptidase inhibitors, while addition of cathepsin L inhibitor prevented their degradation. These results indicate that cathepsin L-like peptidases are involved in the degradation of surface-trapped antibodies and suggest that cysteine peptidases are not only crucial for tissue-invading trematodes, but they can be equally relevant at the parasite-host interface in gut-dwelling flukes.

Keywords

Echinostoma caproni Trematode Cathepsin Cysteine peptidase Antibody Immune evasion 

Notes

Acknowledgments

Research at Universitat de València was supported by Ministerio de Economía y Competitividad (Madrid, Spain) (grant number: BFU2016-75639-P); Conselleria d’Educació, Generalitat Valenciana (Valencia, Spain) (grant number: PROMETEO2014-083 Fase II); and from Ministerio de Sanidad y Consumo (Madrid, Spain) (No. RD12/0018/0013, Red de Investigación Cooperativa en Enfermedades Tropicales—RICET, IV National Program of I+D+I 2008-2011, ISCIII—Subdirección General de Redes y Centros de Investigación Cooperativa and FEDER). Research of PH and LM (Charles University) is currently supported by European Regional Development Fund and Ministry of Education, Youth and Sports of the Czech Republic (CZ.02.1.01/0.0/0.0/16_019/0000759) and Institutional Grants (Charles University PROGRES Q43 and UNCE/SCI/012-204072/2018). We would like to express our sincere gratitude to Professor John P. Dalton, Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast and Dr. Martin Kašný, Department of Parasitology, Faculty of Science, Charles University (Prague), and Department of Botany and Zoology, Faculty of Science, Masaryk University (Brno) for kindly providing some of the antibodies employed in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2019_6487_MOESM1_ESM.pdf (311 kb)
ESM 1 (PDF 311 kb)
436_2019_6487_MOESM2_ESM.pdf (404 kb)
ESM 2 (PDF 404 kb)
436_2019_6487_MOESM3_ESM.pdf (766 kb)
ESM 3 (PDF 766 kb)
436_2019_6487_MOESM4_ESM.pdf (270 kb)
ESM 4 (PDF 270 kb)

References

  1. Andresen K, Simonsen PE, Andersen BJ, Birch-Andersen A (1989) Echinostoma caproni in mice: shedding of antigens from the surface of an intestinal trematode. Int J Parasitol 19:111–118PubMedGoogle Scholar
  2. Berasain P, Carmona C, Frangione B, Dalton JP, Goni F (2000) Fasciola hepatica: parasite-secreted proteinases degrade all human IgG subclasses: determination of the specific cleavage sites and identification of the immunoglobulin fragments produced. Exp Parasitol 94:99–110PubMedGoogle Scholar
  3. Cantacessi C, Mulvenna J, Young ND, Kašný M, Horák P, Aziz A, Hofmann A, Loukas A, Gasser RB (2012) A deep exploration of the transcriptome and “excretory/secretory” proteome of adult Fascioloides magna. Mol Cell Proteomics 11:1340–1353PubMedPubMedCentralGoogle Scholar
  4. Carmona C, Dowd AJ, Smith AM, Dalton JP (1993) Cathepsin L proteinase secreted by Fasciola hepatica in vitro prevents antibody-mediated eosinophil attachment to newly excysted juveniles. Mol Biochem Parasitol 62:9–17PubMedGoogle Scholar
  5. Colley DG, Bustinduy AL, Secor WE, King CH (2014) Human schistosomiasis. Lancet 383:2253–2264PubMedPubMedCentralGoogle Scholar
  6. Collins PR, Stack CM, O'Neill SM, Doyle S, Ryan T, Brennan GP, Mousley A, Stewart M, Maule AG, Dalton JP, Donnelly S (2004) Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propetide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. J Biol Chem 279:17038–17046PubMedGoogle Scholar
  7. Cortés A, Muñoz-Antolí C, Sotillo J, Fried B, Esteban JG, Toledo R (2015) Echinostoma caproni (Trematoda): differential in vivo mucin expression and glycosylation in high- and low-compatible hosts. Parasite Immunol 37:32–42PubMedGoogle Scholar
  8. Cortés A, Sotillo J, Muñoz-Antolí C, Trelis M, Esteban JG, Toledo R (2016) Definitive host influences the proteomic profile of excretory/secretory products of the trematode Echinostoma caproni. Parasit Vectors 9:185-016-1465-xGoogle Scholar
  9. Cortés A, Sotillo J, Muñoz-Antolí C, Molina-Durán J, Esteban JG, Toledo R (2017) Antibody trapping: A novel mechanism of parasite immune evasion by the trematode Echinostoma caproni. PLoS Negl Trop Dis 11:e0005773PubMedPubMedCentralGoogle Scholar
  10. Dalton JP, McKerrow JH, Brindley PJ (1994) Trematode cysteine endopeptidases. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, vol 2. Elsevier, Amsterdam, pp 1176–1182Google Scholar
  11. Dalton JP, Clough KA, Jones MK, Brindley PJ (1997) The cysteine proteinases of Schistosoma mansoni cercariae. Parasitology 114:105–112PubMedGoogle Scholar
  12. Dvořák J, Delcroix M, Rossi A, Vopalensky V, Pospisek M, Sedinova M, Mikeš L, Sajid M, Sali A, McKerrow JH, Horák P, Caffrey CR (2005) Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int J Parasitol 35:895–910PubMedGoogle Scholar
  13. Fujino T, Fried B (1993) Echinostoma caproni and E. trivolvis alter the binding of glycoconjugates in the intestinal mucosa of C3H mice as determined by lectin histochemistry. J Helminthol 67:179–188PubMedGoogle Scholar
  14. Garg G, Bernal D, Trelis M, Forment J, Ortiz J, Valero ML, Pedrola L, Martínez-Blanch J, Esteban JG, Ranganathan S, Toledo R, Marcilla A (2013) The transcriptome of Echinostoma caproni adults: further characterization of the secretome and identification of new potential drug targets. J Proteome 89:202–214Google Scholar
  15. Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, Bogyo M (2000) Chemical approaches for functionally probing the proteome. Mol Cell Proteomics 1:60–68Google Scholar
  16. Harris NL (2011) Advances in helminth immunology: optimism for future vaccine design? Trends Parasitol 27:288–293PubMedGoogle Scholar
  17. Jedličková L, Dvořákova H, Dvořák J, Kašný M, Ulrychova L, Vorel J, Zarsky V, Mikeš L (2018) Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasit Vectors 11:142-018-2666-2Google Scholar
  18. Kang JM, Bahk YY, Cho PY, Hong SJ, Kim TS, Sohn WM, Na BK (2010) A family of cathepsin F cysteine proteases of Clonorchis sinensis is the major secreted proteins that are expressed in the intestine of the parasite. Mol Biochem Parasitol 170:7–16PubMedGoogle Scholar
  19. Kašný M, Mikeš L, Dalton JP, Mountford AP, Horák P (2007) Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae. Parasitology 134:1599–1609PubMedGoogle Scholar
  20. Kašný M, Mikeš L, Hampl V, Dvořák J, Caffrey CR, Dalton JP, Horák P (2009) Chapter 4. Peptidases of trematodes. Adv Parasitol 69:205–297PubMedGoogle Scholar
  21. Kim TS, de Guzman JV, Kong HH, Chung DI (2006) Comparison of gene representation between diploid and triploid Paragonimus westermani by expressed sequence tag analyses. J Parasitol 92:803–816PubMedGoogle Scholar
  22. Lidell ME, Moncada DM, Chadee K, Hansson GC (2006) Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci U S A 103:9298–9303PubMedPubMedCentralGoogle Scholar
  23. Marcilla A, Trelis M, Cortés A, Sotillo J, Cantalapiedra F, Mínguez MT, Valero ML, Sánchez del Pino MM, Muñoz-Antolí C, Toledo R, Bernal D (2012) Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS ONE 7:e45974PubMedPubMedCentralGoogle Scholar
  24. McConnell EL, Basit AW, Murdan S (2008) Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J Pharm Pharmacol 60:63–70PubMedGoogle Scholar
  25. McVeigh P, Maule AG, Dalton JP, Robinson MW (2012) Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes Infect 14:301–310PubMedGoogle Scholar
  26. Mikeš L, Man P (2003) Purification and characterization of a saccharide-binding protein from penetration glands of Diplostomum pseudospathaceum—a bifunctional molecule with cysteine protease activity. Parasitology 127:69–77PubMedGoogle Scholar
  27. Moncada D, Keller K, Chadee K (2003) Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun 71:838–844PubMedPubMedCentralGoogle Scholar
  28. Na BK, Kim SH, Lee EG, Kim TS, Bae YA, Kang I, Yu JR, Sohn WM, Cho SY, Kong Y (2006) Critical roles for excretory-secretory cysteine proteases during tissue invasion of Paragonimus westermani newly excysted metacercariae. Cell Microbiol 8:1034–1046PubMedGoogle Scholar
  29. Na BK, Kang JM, Sohn WM (2008) CsCF-6, a novel cathepsin F-like cysteine protease for nutrient uptake of Clonorchis sinensis. Int J Parasitol 38:493–502PubMedGoogle Scholar
  30. Phillipson M, Atuma C, Henriksnas J, Holm L (2002) The importance of mucus layers and bicarbonate transport in preservation of gastric juxtamucosal pH. Am J Physiol Gastrointest Liver Physiol 282:G211–G219PubMedGoogle Scholar
  31. Piacenza L, Acosta D, Basmadjian I, Dalton JP, Carmona C (1999) Vaccination with cathepsin L proteinases and with leucine aminopeptidase induces high levels of protection against fascioliasis in sheep. Infect Immun 67:1954–1961PubMedPubMedCentralGoogle Scholar
  32. Robinson MW, Dalton JP, Donnelly S (2008a) Helminth pathogen cathepsin proteases: it's a family affair. Trends Biochem Sci 33:601–608PubMedGoogle Scholar
  33. Robinson MW, Tort JF, Lowther J, Donnelly SM, Wong E, Xu W, Stack CM, Padula M, Herbert B, Dalton JP (2008b) Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors. Mol Cell Proteomics 7:1111–1123PubMedGoogle Scholar
  34. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21PubMedGoogle Scholar
  35. Schade C, Flemstrom G, Holm L (1994) Hydrogen ion concentration in the mucus layer on top of acid-stimulated and -inhibited rat gastric mucosa. Gastroenterol 107:180–188Google Scholar
  36. Schmid-Hempel P (2008) Parasite immune evasion: a momentous molecular war. Trends Ecol Evol 23:318–326PubMedGoogle Scholar
  37. Sotillo J, Muñoz-Antolí C, Marcilla A, Fried B, Esteban JG, Toledo R (2007) Echinostoma caproni: kinetics of IgM, IgA and IgG subclasses in the serum and intestine of experimentally infected rats and mice. Exp Parasitol 116:390–398PubMedGoogle Scholar
  38. Sripa B, Kaewkes S, Intapan PM, Maleewong W, Brindley PJ (2010) Food-borne trematodiases in Southeast Asia epidemiology, pathology, clinical manifestation and control. Adv Parasitol 72:305–350PubMedGoogle Scholar
  39. Stack C, Dalton JP, Robinson MW (2011) The phylogeny, structure and function of trematode cysteine proteases, with particular emphasis on the Fasciola hepatica cathepsin L family. Adv Exp Med Biol 712:116–135PubMedGoogle Scholar
  40. Steverding D (2011) The cathepsin B-selective inhibitors CA-074 and CA-074Me inactivate cathepsin L under reducing conditions. Open Enzym Inhib J 4:11–16Google Scholar
  41. Steverding D, Sexton DW, Wang X, Gehrke SS, Wagner GK, Caffrey CR (2012) Trypanosoma brucei: chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol 42:481–488PubMedGoogle Scholar
  42. Toledo R, Fried B (2005) Echinostomes as experimental models for interactions between adult parasites and vertebrate hosts. Trends Parasitol 21:251–254PubMedGoogle Scholar
  43. Toledo R, Espert A, Muñoz-Antolí C, Marcilla A, Fried B, Esteban JG (2005) Kinetics of antibodies and antigens in serum of mice experimentally infected with Echinostoma caproni (Trematoda: Echinostomatidae). J Parasitol 91:978–980PubMedGoogle Scholar
  44. Toledo R, Esteban JG, Fried B (2009) Chapter 3. Recent advances in the biology of echinostomes. Adv Parasitol 69:147–204PubMedGoogle Scholar
  45. Yoo WG, Kim DW, Ju JW, Cho PY, Kim TI, Cho SH, Choi SH, Park HS, Kim TS, Hong SJ (2011) Developmental transcriptomic features of the carcinogenic liver fluke, Clonorchis sinensis. PLoS Negl Trop Dis 5:e1208PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de FarmaciaUniversitat de ValènciaBurjassotSpain
  2. 2.Department of Parasitology, Faculty of ScienceCharles UniversityPrague 2Czech Republic

Personalised recommendations