Advertisement

Gyrodactylus ginestrae n. sp. (Monogenea: Gyrodactylidae), a parasite of the big-scale sand smelt, Atherina boyeri Risso, 1810 (Actinopterygii: Atherinidae) from the Black Sea

  • Yuriy KvachEmail author
  • Markéta Ondračková
  • Mária Seifertová
  • Bohdan Hulak
Fish Parasitology - Original Paper

Abstract

We describe a new species, Gyrodactylus ginestrae n. sp., a parasite of the big-scale sand smelt (Atherina boyeri) from the Black Sea. This is the third monogenean species known from this fish host, found at 70% prevalence, but at relatively low abundance (1.9), on fish gills and fins. The new species is, both morphologically and genetically, most similar to G. salinae, which parasitizes the killifish Aphanius fasciatus (Cyprinodontidae) in the Mediterranean region. These species differ in the size of the haptoral hard parts and the number of small spines of the male copulatory organ. For molecular characterization, the internal transcribed spacer 1 (ITS1), 5.8S rRNA gene, and the internal transcribed spacer 2 (ITS2) were sequenced, completed by a fragment of the COII gene, thereby representing the first molecularly characterized gyrodactylid species from the Black Sea. Phylogenetic reconstruction based on the ITS15.8SITS2 sequence data indicated the position of G. ginestrae n. sp. in the marine “rugiensis” group of G. (Paranephrotus) and G. (Neonephrotus) subgenera which is part of the monophyletic “long ITS1” group. Taking into account the similarity of G. ginestrae n. sp. to several monogeneans from the Atlantic and Mediterranean regions, we suggest the Boreal-Atlantic origin of this species.

Keywords

Gyrodactylidae Brackish water Ponto-Caspian Phylogeny Gulf of Odessa Molecular study 

Notes

Acknowledgments

We thank Dr. Rodney A. Bray for proofreading of the manuscript.

Funding information

This study received financial support through Project No. P505/12/G112 of the European Centre of Ichthyoparasitology, Grant Agency of the Czech Republic—Centre of Excellence.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barson M, Přikrylová I, Vanhove MPM, Huyse T (2010) Parasite hybridization in African Macrogyrodactylus spp. (Monogenea, Platyhelminthes) signals historical host distribution. Parasitology 137(10):1585–1595.  https://doi.org/10.1017/S0031182010000302 CrossRefPubMedGoogle Scholar
  3. Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G (2017) Phylogenetic classification of bony fishes. BMC Evol Biol 17:162.  https://doi.org/10.1186/s12862-017-0958-3 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bruno DW, Collins CM, Cunningham CO, MacKenzie K (2001) Gyrodactyloides bychowskii (Monogenea: Gyrodactylidae) from sea-caged Atlantic salmon Salmo salar in Scotland: occurrence and ribosomal RNA sequence analysis. Dis Aquat Organ 45(3):191–196.  https://doi.org/10.3354/dao045191 CrossRefPubMedGoogle Scholar
  5. Bueno-Silva M, Boeger WA (2014) Neotropical Monogenoidea. 58. Three new species of Gyrodactylus (Gyrodactylidae) from Scleromystax spp. (Callichthyidae) and the proposal of COII gene as an additional fragment for barcoding gyrodactylids. Folia Parasitol 61(3):213–222.  https://doi.org/10.14411/fp.2014.028 CrossRefPubMedGoogle Scholar
  6. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583.  https://doi.org/10.7939/R3J38KV04 CrossRefPubMedGoogle Scholar
  7. Cable J, Harris PD, Tinsley RC, Lazarus CM (1999) Phylogenetic analysis of Gyrodactylus spp. (Platyhelminthes: Monogenea) using ribosomal DNA sequences. Can J Zool 77(9):1439–1449.  https://doi.org/10.1139/z99-069 CrossRefGoogle Scholar
  8. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973CrossRefGoogle Scholar
  9. Çolak SÖ (2013) The helminth community of the sand smelt (Atherina boyeri Risso, 1810) from Lake Iznik, Turkey. J Helminthol 87(2):129–134.  https://doi.org/10.1017/S0022149X11000770 CrossRefPubMedGoogle Scholar
  10. Cone DK, Appy R, Baggett L, King S, Gilmore S, Abbott C (2013) A new gyrodactylid (Monogenea) parasitizing bay pipefish (Syngnathus leptorhynchus) from the Pacific coast of North America. J Parasitol 99(2):183–188.  https://doi.org/10.1645/GE-3224.1 CrossRefPubMedGoogle Scholar
  11. Culurgioni J, Sabatini A, De Murtas R, Mattiucci S, Figus V (2014) Helminth parasites of fish and shellfish from the Santa Gilla Lagoon in southern Sardinia, Italy. J Helminthol 88:489–498.  https://doi.org/10.1017/S0022149X13000461 CrossRefPubMedGoogle Scholar
  12. Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Francisco SM, Congiu L, von der Heyden S, Almada VC (2011) Multilocus phylogenetic analysis of the genus Atherina (Pisces: Atherinidae). Mol Phylogen Evol 61:71–78.  https://doi.org/10.1016/j.ympev.2011.06.002 CrossRefGoogle Scholar
  14. Froese R, Pauly D (2019) FishBase. World Wide Web electronic publication, www.fishbase.org, version 08/2019
  15. Gaevskaya AV, Dmitrieva EV (1997) Review of Black Sea monogenean fauna. Ekologiya Morya 46:7–17 [in Russian with English summary]Google Scholar
  16. García-Vásquez A, Razo-Mendivil U, Rubio-Godoy M (2015) Morphological and molecular description of eight new species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from poeciliid fishes, collected in their natural distribution range in the Gulf of Mexico slope, Mexico. Parasitol Res 114(9):3337–3355.  https://doi.org/10.1007/s00436-015-4559-z CrossRefPubMedGoogle Scholar
  17. Gençoğlu L, Kırankaya ŞG, Yoğurtçuoğlu B, Ekmekçi FG (2017) Feeding properties of the translocated marine fish sand smelt Atherina boyeri Risso, 1810 (Atherinidae) in a freshwater reservoir. Acta Zool Bulg Suppl 9:131–138Google Scholar
  18. Gerasev PI, Dmitrieva EV (2004) A redescription of Gyrodactylus atherinae Bychowsky, 1933 based on the collection of В.E. Bychowsky of 1947 from Atherina boyeri pontica in the Black Sea. Parazitologiya 38(6):562–565 [in Russian with English summary]Google Scholar
  19. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  21. Harris PD, Cable J (2000) Gyrodactylus poeciliae n. sp. and G. milleri n. sp. (Monogenea: Gyrodactylidae) from Poecilia caucana (Steindachner) in Venezuela. Syst Parasitol 47:79–85.  https://doi.org/10.1023/A:1006413804061 CrossRefPubMedGoogle Scholar
  22. Hayward CJ, Iwashita M, Ogawa K, Ernst I (2001) New evidence that Gyrodactylus anguillae (Monogenea) is another invading pest of anguillid eels. Biol Invasions 3:417–424CrossRefGoogle Scholar
  23. Huyse T, Volckaert FAM (2002) Identification of a host-associated species complex using molecular and morphometric analyses, with the description of Gyrodactylus rugiensoides n. sp. (Gyrodactylidae, Monogenea). Int J Parasitol 32:907–919.  https://doi.org/10.1016/S0020-7519(02)00026-7 CrossRefPubMedGoogle Scholar
  24. Huyse T, Pampoulie C, Audenaert V, Volckaert FAM (2006) First report of Gyrodactylus spp. (Platyhelminthes: Monogenea) in the Western Mediterranean Sea: molecular and morphological descriptions. J Parasitol 92(4):682–690.  https://doi.org/10.1645/GE-690R.1 CrossRefPubMedGoogle Scholar
  25. Huyse T, Oeyen M, Larmuseau MHD, Volckaert FAM (2017) Co-phylogeographic study of the flatworm Gyrodactylus gondae and its goby host Pomatoschistus minutus. Parasitol Int 66:119–125.  https://doi.org/10.1016/j.parint.2016.12.008 CrossRefPubMedGoogle Scholar
  26. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform.  https://doi.org/10.1093/bib/bbx108 CrossRefGoogle Scholar
  27. King SD, Forest JJH, Cone DK (2009) Description of Gyrodactylus notatae n. sp. (Monogenea: Gyrodactylidae) from Menidia menidia (L.) (Actinopterygii: Atherinidae) in Nova Scotia, Canada. Syst Parasitol 74(1):23–27.  https://doi.org/10.1007/s11230-009-9185-7 CrossRefPubMedGoogle Scholar
  28. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Publications Kottelat, Cornol and Freyhof, BerlinGoogle Scholar
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549.  https://doi.org/10.1093/molbev/msy096 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kvach Y, Drobiniak O (2017) The parasites of the big-scale sand-smelt, Atherina boyeri Risso, 1810 (Actinopterygii: Atherinidae), in the North-Western Black. Sci Bull Uzhgorod Univ (Ser Biol) 42:38–43 [in Ukrainian with English summary]Google Scholar
  31. Kvach Y, Kutsokon Y (2017) The non-indigenous fishes in the fauna of Ukraine: a potentia ad actum. BioInvasions Rec 6(3):269–279.  https://doi.org/10.3391/bir.2017.6.3.13 CrossRefGoogle Scholar
  32. Kvach Y, Ondračková M, Janáč M, Jurajda P (2016) Methodological issues affecting the study of fish parasites. I. Duration of live fish storage prior to dissection. Dis Aquat Organ 119(2):107–115.  https://doi.org/10.3354/dao02990 CrossRefPubMedGoogle Scholar
  33. Kvach Y, Bryjová A, Sasal P, Winkler HM (2017) A revision of the genus Aphalloides (Digenea: Cryptogonimidae), parasites of European brackish water fishes. Parasitol Res 116(7):1973–1980.  https://doi.org/10.1007/s00436-017-5480-4 CrossRefPubMedGoogle Scholar
  34. Kvach Y, Bryjová A, Sasal P, Winkler HM (2018) The taxonomic and phylogenetic status of digeneans from the genus Timoniella (Digenea: Cryptogonimidae) in the Black and Baltic Seas. J Helminthol 92(5):596–603.  https://doi.org/10.1017/S0022149X1700075X CrossRefPubMedGoogle Scholar
  35. Lisitsyna OI, Miroshnichenko AI (2008) Catalog of helminthes of Ukraine. Acanthocephala. Monogenea, Akademperiodika, Kiev [in Russian]Google Scholar
  36. Lumme J, Ziętara MS (2018) Horizontal transmission of the ectoparasite Gyrodactylus arcuatus (Monogenea: Gyrodactylidae) to the next generation of the three-spined stickleback Gasterosteus aculeatus. Folia Parasitol 65:006.  https://doi.org/10.14411/fp.2018.006 CrossRefGoogle Scholar
  37. Maillard C (1973) Etude du cycle évolutif du Trématode: Acanthostomum imbutiforme (Molin, 1859) Gohar, 1934, parasite de Morone labrax (Linné, 1758). Ann Parasitol hum comp 48:33–46CrossRefGoogle Scholar
  38. Malmberg G (1957) Om forekomsten av Gyrodactylus pa svenska fiskar. Skrifter Utgivna av Sodra Sveriges Fiskeriforening 1956:19–76Google Scholar
  39. Malmberg G (1970) The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea). Arkiv Zool 23:1–235Google Scholar
  40. Matějusová I, Gelnar M, McBeath AJA, Collins CM, Cunningham CO (2001) Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). Int J Parasitol 31:738–745.  https://doi.org/10.1016/S0020-7519(01)00176-X CrossRefPubMedGoogle Scholar
  41. Matějusová I, Gelnar M, Verneau O, Cunningham CO, Littlewood DTJ (2003) Molecular phylogenetic analysis of the genus Gyrodactylus (Platyhelminthes: Monogenea) inferred from rDNA ITS region: subgenera versus species groups. Parasitology 127(6):603–611.  https://doi.org/10.1017/S0031182003004098 CrossRefPubMedGoogle Scholar
  42. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30(5):1188–1195.  https://doi.org/10.1093/molbev/mst024 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Neilson ME, Stepien CA (2009) Evolution and phylogeography of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei): evidence for new cryptic species. Biol J Linn Soc 96:664–684.  https://doi.org/10.1111/j.1095-8312.2008.01135.x CrossRefGoogle Scholar
  44. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Paladini G, Cable J, Fioravanti ML, Faria PJ, Di Cave D, Shinn AP (2009) Gyrodactylus orecchiae sp. n. (Monogenea: Gyrodactylidae) from farmed populations of gilthead seabream (Sparus aurata) in the Adriatic Sea. Folia Parasitol 56(1):21–28CrossRefGoogle Scholar
  46. Paladini G, Hansen H, Fioravanti ML, Shinn AP (2011a) Gyrodactylus longipes n. sp. (Monogenea: Gyrodactylidae) from farmed gilthead seabream (Sparus aurata L.) from the Mediterranean. Parasitol Int 60(4):410–418.  https://doi.org/10.1016/j.parint.2011.06.022 CrossRefPubMedGoogle Scholar
  47. Paladini G, Huyse T, Shinn AP (2011b) Gyrodactylus salinae n. sp. (Platyhelminthes: Monogenea) infecting the south European toothcarp Aphanius fasciatus (Valenciennes) (Teleostei, Cyprinodontidae) from a hypersaline environment in Italy. Parasit Vectors 4:100.  https://doi.org/10.1186/1756-3305-4-100 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M (2004) Lithological-paleogeographic maps of Paratethys. Courrier Forschungs-Institut Senckenberg 250:1–46Google Scholar
  49. Přikrylová I, Matějusová I, Musilová N, Gelnar M, Harris PD (2009) A new gyrodactylid (Monogenea) genus on gray bichir, Polypterus senegalus (Polypteridae) from Senegal (West Africa). J Parasitol 95(3):555–560.  https://doi.org/10.1645/GE-1652.1 CrossRefPubMedGoogle Scholar
  50. Quignard J-P, Pras A (1986) Atherinidae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 3. UNESCO, Paris, pp 1207–1210Google Scholar
  51. Radujković BM, Šundić D (2014) Parasitic flatworms (Platyhelminthes: Monogenea, Digenea, Cestoda) of fishes from the Adriatic Sea. Natura Montenegrina 13(1):7–280Google Scholar
  52. Rambaut A (2017) FigTree-version 1.4.3, a graphical viewer of phylo-genetic trees. Available from http://tree.bio.ed.ac.uk/software/figtree/ (12-2018 accessed)
  53. Roman E (1956) Noi contribuții la cunoaşterea fauneli de Monogenee din R.P.R. Communicarile Academiei RPR 6(1):133–144Google Scholar
  54. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sarabeev V, Rubtsova N, Yang T, Balbuena JA (2013) Taxonomic revision of the Atlantic and Pacific species of Ligophorus (Monogenea, Dactylogyridae) from mullets (Teleostei, Mugilidae) with the proposal of a new genus and description of four new species. Vestnik Zoologii Suppl 28:1–113Google Scholar
  56. Sargent PS, Methven DA, Hooper RG, McKenzie CH (2008) A range extension of the Atlantic silverside, Menidia menidia, to coastal waters of southwestern Newfoundland. Can Field-Natur 122(4):338–344.  https://doi.org/10.22621/cfn.v122i4.641 CrossRefGoogle Scholar
  57. Sasal P, Morand S, Guégan J-F (1997) Determinants of parasite species richness in Mediterranean marine fishes. Mar Ecol Prog Ser 149:61–71.  https://doi.org/10.3354/meps149061 CrossRefGoogle Scholar
  58. Schwarzhans W, Ahnelt H, Carnevale G, Japundžić S, Bradić K, Bratishko A (2017a) Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part III: tales from the cradle of the Ponto-Caspian gobies. Swiss J Palaeontol 136:45–92.  https://doi.org/10.1007/s13358-016-0120-7 CrossRefGoogle Scholar
  59. Schwarzhans W, Carnevale G, Bannikov AF, Japundžić S, Bradić K (2017b) Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part I: Atherina suchovi Switchenska, 1973. Swiss J Palaeontol 136:7–17.  https://doi.org/10.1007/s13358-015-0111-0 CrossRefGoogle Scholar
  60. Semenova NN, Ivanov VP, Ivanov VM (2007) Parasite fauna and diseases of fishes of the Caspian Sea. ASTU Press, Astrakhan [in Russian with English summary]Google Scholar
  61. Shinn AP, Hansen H, Olstad K, Bachmann L, Bakke TA (2004) The use of morphometric characters to discriminate specimens of laboratory-reared and wild populations of Gyrodactylus salaris and G. thymalli (Monogenea). Folia Parasitol 51:239–252.  https://doi.org/10.14411/fp.2004.029 CrossRefPubMedGoogle Scholar
  62. Stoyanov B, Huyse T, Pankov P, Georgiev BB (2016) Morphological and molecular identification of Gyrodactylus bubyri Osmanov, 1965 (Monogenea: Gyrodactylidae) from Caucasian dwarf goby, Knipowitschia caucasica (Berg) (Actinopterygii: Gobionellidae) from a Black Sea lagoon. Parasitol Res 115(4):1617–1625.  https://doi.org/10.1007/s00436-015-4899-8 CrossRefPubMedGoogle Scholar
  63. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):W232–W235.  https://doi.org/10.1093/nar/gkw256 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tu X, Ling F, Huang A, Wang G (2015) An infection of Gyrodactylus kobayashii Hukuda, 1940 (Monogenea) associated with the mortality of goldfish (Carassius auratus) from central China. Parasitol Res 114:737–745.  https://doi.org/10.1007/s00436-014-4241-x CrossRefPubMedGoogle Scholar
  65. Vanhove MP, Tessens B, Schoelinck C, Jondelius U, Littlewood DT, Artois T, Huyse T (2013) Problematic barcoding in flatworms: a case-study on monogeneans and rhabdocoels (Platyhelminthes). ZooKeys 365:355–379.  https://doi.org/10.3897/zookeys.365.5776 CrossRefGoogle Scholar
  66. Vanhove MPM, Economou AN, Zogaris S, Giakoumi S, Zanella D, Volckaert FAM, Huyse T (2014) The Gyrodactylus (Monogenea, Gyrodactylidae) parasite fauna of freshwater sand gobies (Teleostei, Gobioidei) in their centre of endemism, with description of seven new species. Parasitol Res 113(2):653–668.  https://doi.org/10.1007/s00436-013-3693-8 CrossRefPubMedGoogle Scholar
  67. Vanhove MPM, Briscoe AG, Jorissen MWP, Littlewood DTJ, Huyse T (2018) The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae). BMC Genomics 19:520.  https://doi.org/10.1186/s12864-018-4893-5 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xavier R, Faria PJ, Paladini G, van Oosterhout C, Johnson M, Cable J (2015) Evidence for cryptic speciation in directly transmitted gyrodactylid parasites of Trinidadian guppies. PloS One 10(1):e0117096.  https://doi.org/10.1371/journal.pone.0117096 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zaitsev YP (1998) The bluest in the World. UN Publication, New York [in Russian]Google Scholar
  70. Zaitsev Y, Mamaev V (1997) Biological diversity in the Black Sea: a study of change and decline. UN Publication, New YorkGoogle Scholar
  71. Zenkevich LA (1963) Biology of the seas of the USSR. Izdatelsto AN SSSR, Moskva [in Russian]Google Scholar
  72. Ziętara MS, Lumme J (2002) Speciation by host switch and adaptive radiation in a fish parasite genus Gyrodactylus (Monogenea, Gyrodactylidae). Evol 56(12):2445–2458.  https://doi.org/10.1111/j.0014-3820.2002.tb00170.x CrossRefGoogle Scholar
  73. Ziętara MS, Lumme J (2003) The crossroads of molecular, typological and biological species concepts: two new species of Gyrodactylus Nordmann, 1832 (Monogenea: Gyrodactylidae). Syst Parasitol 55:39–52.  https://doi.org/10.1023/A:1023938415148 CrossRefPubMedGoogle Scholar
  74. Ziętara MS, Huyse T, Lumme J, Volckaert FA (2002) Deep divergence among subgenera of Gyrodactylus inferred from rDNA ITS region. Parasitology 124(1):39–52.  https://doi.org/10.1017/S0031182001008939 CrossRefPubMedGoogle Scholar
  75. Ziętara MS, Rokicka M, Stojanovski S, Lumme J (2010) Introgression of distant mitochondria into the genome of Gyrodactylus salaris: nuclear and mitochondrial markers are necessary to identify parasite strains. Acta Parasitol 55(1):20–28.  https://doi.org/10.2478/s11686-010-0016-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Marine BiologyNational Academy of Sciences of UkraineOdessaUkraine
  2. 2.Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
  3. 3.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  4. 4.Odessa Center of Southern Scientific Research Institute of Marine Fisheries and OceanographyOdessaUkraine
  5. 5.Department of Hydrobiology and General EcologyI.I. Mechnikov Odessa National UniversityOdessaUkraine

Personalised recommendations