Advertisement

Parasitology Research

, Volume 118, Issue 12, pp 3337–3347 | Cite as

Long-term temporal variation in the parasite community structure of metazoans of Pimelodus blochii (Pimelodidae), a catfish from the Brazilian Amazon

  • Luciano Pereira Negreiros
  • Alexandro Cezar Florentino
  • Felipe Bisaggio Pereira
  • Marcos Tavares-DiasEmail author
Fish Parasitology - Original Paper

Abstract

The Amazon represents one of the most complex biomes in the world; however, the temporal variations in parasite community structure of fishes inhabiting this region remain poorly understood. Therefore, processes generating such variations are still unknown. The present study evaluated the long-term temporal variation of community structure of metazoan parasites of Pimelodus blochii collected in Iaco River, State of Acre (Southwestern Brazilian Amazon). A total of 196 parasites were collected over a 6-year period (2012–2017). Twenty-four different taxa of parasites were found, of which 5 Monogenea, 11 Nematoda, 3 Digenea, 1 Acanthocephala, 1 Cestoda, and 3 Crustacea. The overall species richness ranged from 4 in 2012 to 17 in 2016, in which nematodes (larvae and adults) showed higher numerical dominance, diversity, and species richness. However, the annual species richness was similar between the study years, except in 2016, where it showed a distinctly higher value. The overall parasite diversity was also different in 2012 and 2016, whereas the overall abundance differed in 2013 and 2017. The prevalence and abundance of some infracommunities of parasites varied over time. The temporal changes in the parasite community structure of P. blochii are probably related to variations in host-related features, i.e., body size and shift in diet composition as well as to the occurrence of parasites with distinct life history and biology (mainly monogeneans, digeneans, and nematodes). This is the first evaluation of a long-term temporal variation in the structure of the parasite community in fish from the Amazon.

Keywords

Diversity Ecology Helminths Nematodes 

Notes

Funding information

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the productivity research grant awarded to Dr. M. Tavares-Dias (# 303013/2015-0).

Compliance with ethical standards

Ethical Disclosures

All procedures involving animals were authorized by the Instituto Chico Mendes para Conservação da Biodiversidade (acronym SISBIO, No. 60899-1) and were strictly according to the protocols and rules of the Committee on Ethics of Animal Use of the Embrapa

Amapá (Protocol No. 002-CEUA-CPAFAP).

References

  1. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693.  https://doi.org/10.1111/j.1461-0248.2006.00926.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. Revisited. J Parasitol 83:575CrossRefGoogle Scholar
  3. Cavalcante PHO, Silva MT, Santos EGN, Chagas-Moutinho VA, Santos CP (2017) Orientatractis moraveci n. sp. and Rondonia rondoni Travassos, 1920 (Nematoda: Atractidae), parasites of Pimelodus blochii (Osteichthyes, Pimelodidae) from the Acre and Xapuri Rivers, western Amazon, Brazil. Parasitology 144:226–236.  https://doi.org/10.1017/S0031182016001736 CrossRefPubMedGoogle Scholar
  4. Cavalcante PHO, Moravec F, Santos CP (2018) The philometrid nematode Philometroides acreanensis n. sp. from the stomach wall of the catfish Pimelodus blochii in north-western Brazil. J Helminthol 92:109–115.  https://doi.org/10.1017/S0022149X1700013X CrossRefPubMedGoogle Scholar
  5. Eiras JC, Takemoto RM, Pavanelli GC (2006) Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Eduem, MaringáGoogle Scholar
  6. Froese R, Pauly D. Editors. (2019) FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2019)
  7. Gallegos-Navarro Y, Violante-González J, Monks S, García-Ibáñez S, Rojas-Herrera AA, Pulido-Flores G, Rosas-Acevedo JL (2018) Factors linked to temporal and spatial variation in the metazoan parasite communities of green jack Caranx caballus (Günther 1868) (Pisces: Carangidae) from the Pacific coast of Mexico. J Nat Hist 52(39-40):2573–2590.  https://doi.org/10.1080/00222933.2018.1546914 CrossRefGoogle Scholar
  8. Garcez RCS, Souza LA, Frutuoso ME, Freitas CEC (2017) Seasonal dynamic of Amazonian small-scale fisheries is dictated by the hydrologic pulse. Bol Inst Pesca 43:207–221CrossRefGoogle Scholar
  9. Gil de Pertierra AA (2004) Redescription of Monticellia magna (Rego, dos Santos & Silva, 1974) (Eucestoda: Monticelliidae) parasite of Pimelodus spp. (Pisces: Siluriformes) from Argentina, and morphological study of microtriches. Rev Suisse Zool 11:11–20CrossRefGoogle Scholar
  10. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analyses. Pelaeont Eletron 4:1–9Google Scholar
  11. Hoshino EM, Tavares-Dias M (2019) Interannual and seasonal variation in protozoan and metazoan parasite communities of Hemibrycon surinamensis, a characid fish inhabiting the Brazilian Amazon. Acta Parasitol.  https://doi.org/10.2478/s11686-019-00057-5 CrossRefGoogle Scholar
  12. Kennedy CR (1993) The dynamics of intestinal helminth communities in eels Anguilla anguilla in a small stream: long-term changes in richness and structure. Parasitology 107:71–78CrossRefGoogle Scholar
  13. Kennedy CR (1997) Long-term and seasonal changes in composition and richness of intestinal helminth communities in eels Anguilla anguilla of an isolated English river. Folia Parasitol 44:267–273PubMedGoogle Scholar
  14. Kennedy CR, Moriarty C (2002) Long-term stability in the richness and structure of helminth communities in eels, Anguilla anguilla, in Lough Derg, River Shannon, Ireland. J Helminthol 76:315–322CrossRefGoogle Scholar
  15. Kennedy CR, Shears PC, Shears JA (2001) Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology 123:257–269CrossRefGoogle Scholar
  16. Kohn A, Fernandes BMM, Cohen SC (2007) South American Trematodes parasites of fishes. Editora Imprinta Express Ltda, Rio de JaneiroGoogle Scholar
  17. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, CanadaGoogle Scholar
  18. Lundberg JG, Littmann MW (2003) Family Pimelodidae (Long-whiskered catfishes). In: Reis RE, Kullander SO, Ferraris JRCJ (eds) Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, pp 432–446Google Scholar
  19. Luque JL, Tavares LER (2007) Checklist of Copepoda associated with fishes from Brazil. Zootaxa 1579:1–39CrossRefGoogle Scholar
  20. Luque JL, Aguiar JC, Vieira FM, Gibson D (2011) Santos CP (2011) Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 3082:1–88CrossRefGoogle Scholar
  21. Magurran AE (2004) Measuring biological diversity. Blackwell Science, OxfordGoogle Scholar
  22. Mendoza-Palmero CA, Scholz T (2011) New species of Demidospermus (Monogenea: Dactylogyridae) of pimelodid catfish (Siluriformes) from Peruvian Amazonia and the reassignment of Urocleidoides lebedevi Kritsky and Thatcher, 1976. J Parasitol 97:586–592.  https://doi.org/10.1645/GE-2655.1 CrossRefPubMedGoogle Scholar
  23. Nakajima R, Rimachi EV, Santos-Silva EN, Calixto LSF, Leite RG, Khen A, Yamane T, Mazeroll AI, Inuma JC, Utumi EYK, Akira Tanaka A (2017) The density and biomass of mesozooplankton and ichthyoplankton in the Negro and the Amazon Rivers during the rainy season: the ecological importance of the confluence boundary. PeerJ 5:e3308.  https://doi.org/10.7717/peerj.3308 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Negreiros LP, Pereira FB, Tavares-Dias M, Tavares LER (2018) Community structure of metazoan parasites from Pimelodus blochii in two rivers of the western Brazilian Amazon: same seasonal traits, but different anthropogenic impacts. Parasitol Res 117:3791–3798.  https://doi.org/10.1007/s00436-018-6082-5 CrossRefPubMedGoogle Scholar
  25. Negreiros LP, Tavares-Dias M, Elisei C, Tavares LER, Felipe B, Pereira FB (2019) First description of the male of Philometroides acreanensis and phylogenetic assessment of Philometridae (Nematoda: Dracunculoidea) suggest instability of some taxa. Parasitol Inter 69:30–38.  https://doi.org/10.1016/j.parint.2018.10.010 CrossRefGoogle Scholar
  26. Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: Community ecology package. R Package version 2.4-3. https://CRAN.R-project.org/package=vegan. Accessed 18 May 2019
  27. Orélis-Ribeiro R, Bullard SA (2015) Blood flukes (Digenea: Aporocotylidae) infecting body cavity of South American catfishes (Siluriformes: Pimelodidae): two new species from rivers in Bolivia, Guyana and Peru with a re-assessment of Plehniella Szidat, 1951. Folia Parasitol 62:1–17.  https://doi.org/10.14411/fp.2015.050 CrossRefGoogle Scholar
  28. Pech D, Aguirre-Macedo ML, Lewis JW, Vidal-Martínez VM (2010) Rainfall induces time-lagged changes in the proportion of tropical aquatic hosts infected with metazoan parasites. Inter J Parasitol 40:937–944CrossRefGoogle Scholar
  29. Pereira TKK, Morais JF (2014) Técnicas de geoprocessamento aplicadas aos problemas ambientais que afetam o Rio Iaco dentro do limite do município de Sena Madureira-AC. Rev Brasil Gestão Amb 8:1–6Google Scholar
  30. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/. Accessed 18 May 2019
  31. Ríos-Villamizar EA, Piedade MTF, Junk WJ, Waichman AV (2017) Surface water quality and deforestation of the Purus river basin, Brazilian Amazon. Int Aquat Res 9:81–88.  https://doi.org/10.1007/s40071-016-0150-1 CrossRefGoogle Scholar
  32. Rohde K, Hayward C, Heap M (1995) Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol 25:945–970.  https://doi.org/10.1016/0020-7519(95)00015-T CrossRefPubMedGoogle Scholar
  33. Silva ES, Keppeler EC, Silvério JF (2012) Composition of zooplankton of the small river Jesumira, located in a cleared in area at the Park National Serra do Divisor, State of Acre, Brazil. Semina: Ciên Biol Saúde 33:201–210.  https://doi.org/10.5433/1679-0367.2012v33n2p201 CrossRefGoogle Scholar
  34. Soares MGM, Costa EL, Siqueira-Souza FK, Anjos HDB, Yamamoto KC, Freitas CEC (2011) Peixes de lagos do médio Rio Solimões, 2nd edn. Instituto Piatam, ManausGoogle Scholar
  35. Soberon JM, Llorente BJ (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488.  https://doi.org/10.1046/j.1523-1739.1993.07030480.x CrossRefGoogle Scholar
  36. Vidal-Martínez VM, Pal P, Aguirre-Macedo ML, May-Tec AL, Lewis JW (2014) Temporal variation in the dispersion patterns of metazoan parasites of a coastal fish species from the Gulf of Mexico. J Helminthol 88:112–122CrossRefGoogle Scholar
  37. Villalba-Vasquez PJ, Violante-González J, Monks S, Marino-Romero JU, Ibáñez SG, Rojas-Herrera AA, FloresGarza R, Rosas Guerrero V (2018) Temporal and spatial variations in the metazoan parasite communities of the Panama spadefish, Parapsettus panamensis (Pisces: Ephippidae), from the Pacific coast of Mexico. Invert Biol 137:339–354CrossRefGoogle Scholar
  38. Violante-González J, Aguirre-Macedo ML, Rojas-Herrera A, Guerrero SG (2009) Metazoan parasite community of blue sea catfish, Sciades guatemalensis (Ariidae), from Tres Palos Lagoon, Guerrero, Mexico. Parasitol Res 105:997–1005CrossRefGoogle Scholar
  39. Zander CD (2003) Four-year monitoring of parasite communities in gobiid fishes of the south-western Baltic: II. Infracommunity. Parasitol Res 93:17–29CrossRefGoogle Scholar
  40. Zander CD (2004) Four-year monitoring of parasite communities in gobiid fishes of the southwestern Baltic II. Infracommunity. Parasitol Res 93:17–29.  https://doi.org/10.1007/s00436-004-1087-7 CrossRefPubMedGoogle Scholar
  41. Zander CD (2005) Four-year monitoring of parasite communities in gobiid fishes of the southwest Baltic. III. Parasite species diversity and applicability of monitoring. Parasitol Res 95:136–144.  https://doi.org/10.1007/s00436-004-1252-z CrossRefPubMedGoogle Scholar
  42. Zar JH (2010) Biostatistical analysis. PrenticeHall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Insituto Federal do Acre (IFAC)Rio BrancoBrazil
  2. 2.Universidade Federal do Amapá (UNIFAP)MacapáBrazil
  3. 3.Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências (INBIO)Universidade Federal de Mato Grosso do Sul (UFMS)Campo GrandeBrazil
  4. 4.Embrapa AmapáMacapáBrazil

Personalised recommendations