Parasitology Research

, Volume 118, Issue 12, pp 3497–3508 | Cite as

Epidemiology, hematology, and unusual morphological characteristics of Plasmodium during an avian malaria outbreak in penguins in Brazil

  • Ralph Eric Thijl VanstreelsEmail author
  • Daniela de Angeli Dutra
  • Francisco C. Ferreira-Junior
  • Renata Hurtado
  • Leandro Egert
  • Luis Felipe S. P. Mayorga
  • Renata C. C. Bhering
  • Érika M. Braga
  • José Luiz Catão-Dias
Protozoology - Original Paper


Avian malaria is a mosquito-borne disease caused by Plasmodium spp. protozoa, and penguins are considered particularly susceptible to this disease, developing rapid outbreaks with potentially high mortality. We report on an outbreak of avian malaria in Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center in Espírito Santo, southeast Brazil. In August and September 2015, a total of 89 Magellanic penguins (87 juveniles and 2 adults) received care at Institute of Research and Rehabilitation of Marine Animals. Over a period of 2 weeks, Plasmodium infections were identified in eight individuals (9.0%), four of which died (mortality = 4.5%, lethality = 50%). Blood smears and sequencing of the mitochondrial cytochrome b gene revealed the presence of Plasmodium lutzi SPMAG06, Plasmodium elongatum GRW06, Plasmodium sp. PHPAT01, Plasmodium sp. SPMAG10, and Plasmodium cathemerium (sequencing not successful). Two unusual morphological features were observed in individuals infected with lineage SPMAG06: (a) lack of clumping of pigment granules and (b) presence of circulating exoerythrocytic meronts. Hematological results (packed cell volume, plasma total solids, complete blood cell counts) of positive individuals showed differences from those of negative individuals depending on the lineages, but there was no overarching pattern consistently observed for all Plasmodium spp. The epidemiology of the outbreak and the phylogeography of the parasite lineages detected in this study support the notion that malarial infections in penguins undergoing rehabilitation in Brazil are the result of the spillover inoculation by plasmodia that circulate in the local avifauna, especially Passeriformes.


Hemosporida Neotropics Pathogen spillover Seabird Spheniscidae Vector-borne disease 



We thank Instituto Estadual do Meio Ambiente e Recursos Hídricos (IEMA) for the valuable partnership that was essential to this study, and to the contributions by Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) and Instituto de Mamíferos Aquáticos (IMA). We are grateful for the indirect contributions by Jorge Oyakawa, Trudi Webster, Staffan Bensch and Gediminas Valkiūnas. We also would like to express our appreciation for the efforts by Staffan Bensch and colleagues in maintaining the MalAvi database. This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Minas Gerais Research Foundation (FAPEMIG), Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES), National Counsel of Technological and Scientific Development (CNPq), and the Program for Technological Development in Tools for Health-PDTIS-FIOCRUZ.

Compliance with ethical standards

All procedures in this study were approved by the Ethics Committee on Animal Use of the School of Veterinary Medicine and Animal Science of the University of São Paulo (CEUA 601415) and were authorized by the Brazilian authorities (SISBIO 20825-6).

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

436_2019_6459_MOESM1_ESM.docx (667 kb)
ESM 1 (DOCX 666 kb)
436_2019_6459_MOESM2_ESM.xls (108 kb)
ESM 2 (XLS 108 kb)
436_2019_6459_MOESM3_ESM.xls (80 kb)
ESM 3 (XLS 80 kb)
436_2019_6459_MOESM4_ESM.jpg (195 kb)
ESM 4 (JPG 195 kb)


  1. Atkinson CT (2007) Avian malaria. In: Thomas N, Hunter D, Atkinson CT (eds) Infectious diseases of wild birds. Blackwell Publishing, Ames, pp 35–53Google Scholar
  2. Atkinson CT, LaPointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Avian Med Surg 23:53–63PubMedGoogle Scholar
  3. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358PubMedGoogle Scholar
  4. Bernotienė R, Palinauskas V, Iezhova T, Murauskaitė D, Valkiūnas G (2016) Avian haemosporidian parasites (Haemosporida): a comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp Parasitol 163:31–37PubMedGoogle Scholar
  5. Boersma PD, Frere E, Kane OJ et al (2013) Magellanic penguin (Spheniscus magellanicus). In: García-Borboroglu P, Boersma PD (eds) Penguins: natural history and conservation. University of Washington Press, Seattle, pp 285–302Google Scholar
  6. Botes A, Thiart H, Parsons NJ, Bellstedt DU (2017) Conservation implications of avian malaria exposure for African penguins during rehabilitation. S Afr J Sci 113:1–8Google Scholar
  7. Bueno MG, Lopez RPG, de Menezes RMT et al (2010) Identification of Plasmodium relictum causing mortality in penguins (Spheniscus magellanicus) from São Paulo Zoo, Brazil. Vet Parasitol 173:123–127PubMedGoogle Scholar
  8. Chagas CRF, Valkiūnas G, Guimarães LO et al (2017) Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis. Malar J 16:83PubMedPubMedCentralGoogle Scholar
  9. Clark NJ, Olsson-Pons S, Ishtiaq F, Clegg SM (2015) Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird. Int J Parasitol 45:891–899PubMedGoogle Scholar
  10. Dantas GPM, Almeida VS, Maracini P et al (2013) Evidence for northward extension of the winter range of Magellanic penguins along the Brazilian coast. Mar Ornithol 41:195–197Google Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772PubMedPubMedCentralGoogle Scholar
  12. Dein FJ, Wilson A, Fischer D, Langenberg P (1994) Avian leucocyte counting using the hemocytometer. J Zoo Wildl Med 25:432–437Google Scholar
  13. Fallon SM, Ricklefs RE, Swanson B, Bermingham E (2003) Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol 89:1044–1047PubMedGoogle Scholar
  14. Fecchio A, Pinheiro R, Felix G, Faria IP, Pinho JB, Lacorte GA, Braga EM, Farias IP, Aleixo A, Tkach VV, Collins MD, Bell JA, Weckstein JD (2018) Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography 41:505–515Google Scholar
  15. Fecchio A, Wells K, Bell JA, Tkach VV, Lutz HL, Weckstein JD, Clegg SM, Clark NJ (2019) Climate variation influences host specificity in avian malaria parasites. Ecol Lett 22:547–557PubMedGoogle Scholar
  16. Ferreira Junior FC, Rodrigues RA, Ellis VA, Leite LO, Borges MAZ, Braga ÉM (2017) Habitat modification and seasonality influence avian haemosporidian parasite distributions in southeastern Brazil. PLoS One 12:e0178791PubMedPubMedCentralGoogle Scholar
  17. Fix AS, Waterhouse C, Greiner EC, Stoskopf MK (1988) Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildl Dis 24:610–619PubMedGoogle Scholar
  18. Gallo L, Vanstreels RET, Cook RA, Karesh WB, Uhart M (2019) Hematology, plasma biochemistry, and trace element reference values for free-ranging adult Magellanic Penguins (Spheniscus magellanicus). Polar Biol 42:733–742Google Scholar
  19. Garamszegi LZ (2011) Climate change increases the risk of malaria in birds. Glob Chang Biol 17:1751–1759Google Scholar
  20. Gering E, Atkinson CT (2004) A rapid method for counting nucleated erythrocytes on stained blood smears by digital image analysis. J Parasitol 90:879–881PubMedGoogle Scholar
  21. González AD, Lotta IA, García LF, Moncada LI, Matta NE (2015) Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitol Int 64:48–59PubMedGoogle Scholar
  22. Graczyk TK, Shaw ML, Cranfield MR, Beall FB (1994) Hematologic characteristics of avian malaria cases in African black-footed penguins (Spheniscus demersus) during the first outdoor exposure season. J Parasitol 80:302–308PubMedGoogle Scholar
  23. Grilo M, Vanstreels R, Wallace R et al (2016) Malaria in penguins–current perceptions. Avian Pathol 45:393–407PubMedGoogle Scholar
  24. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802PubMedGoogle Scholar
  25. Lacorte GA, Felix GM, Pinheiro RR et al (2013) Exploring the diversity and distribution of neotropical avian malaria parasites–a molecular survey from Southeast Brazil. PLoS One 8:e57770PubMedPubMedCentralGoogle Scholar
  26. Levin II, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195Google Scholar
  27. Mantilla JS, Matta NE, Pacheco MA, Escalante AA, González AD, Moncada LI (2013) Identification of Plasmodium (Haemamoeba) lutzi (Lucena, 1939) from Turdus fuscater (great thrush) in Colombia. J Parasitol 99:662–669PubMedGoogle Scholar
  28. Manwell R, Sessler G (1971) Plasmodium paranucleophilum n. sp. from a South American tanager. J Protozool 18:629–632PubMedGoogle Scholar
  29. Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, Czirják GA, Ewen J, Hellgren O, Hořáková D, Iezhova TA, Jensen H, Križanauskienė A, Lima MR, de Lope F, Magnussen E, Martin LB, Møller AP, Palinauskas V, Pap PL, Pérez-Tris J, Sehgal RNM, Soler M, Szöllősi E, Westerdahl H, Zetindjiev P, Bensch S (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6:e21905PubMedPubMedCentralGoogle Scholar
  30. Medeiros MC, Hamer GL, Ricklefs RE (2013) Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites. Proc R Soc B Biol Sci 280:20122947Google Scholar
  31. Okanga S, Cumming GS, Hockey PA et al (2014) Host specificity and co-speciation in avian haemosporidia in the Western Cape, South Africa. PLoS One 9:e86382PubMedPubMedCentralGoogle Scholar
  32. de Oliveira L, Cedrola F, Senra MVX, Scopel KKG, Martinele I, Tostes R, Dias RJP, D'Agosto M (2019) Polymorphism evidence in Plasmodium (Haemamoeba) lutzi Lucena, 1939 (Apicomplexa, Haemosporida) isolated from Brazilian wild birds. Parasitol Int 70:70–76PubMedGoogle Scholar
  33. Outlaw DC, Ricklefs RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141:1223–1232PubMedGoogle Scholar
  34. Pacheco MA, Matta NE, Valkiūnas G et al (2017) Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol 35:383–403PubMedCentralGoogle Scholar
  35. Palinauskas V, Žiegytė R, Ilgūnas M, Iezhova TA, Bernotienė R, Bolshakov C, Valkiūnas G (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62PubMedGoogle Scholar
  36. Palinauskas V, Žiegytė R, Iezhova TA, Ilgūnas M, Bernotienė R, Valkiūnas G (2016) Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite. Int J Parasitol 46:697–707PubMedGoogle Scholar
  37. Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedPubMedCentralGoogle Scholar
  38. Roos F, Belo N, Silveira P, Braga E (2015) Prevalence and diversity of avian malaria parasites in migratory Black Skimmers (Rynchops niger, Laridae, Charadriiformes) from the Brazilian Amazon Basin. Parasitol Res 114:3903–3911PubMedGoogle Scholar
  39. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  40. Sijbranda D, Hunter S, Howe L, Lenting B, Argilla L, Gartrell BD (2017) Cases of mortality in little penguins (Eudyptula minor) in New Zealand associated with avian malaria. N Z Vet J 65:332–337PubMedGoogle Scholar
  41. Silveira P, Belo NO, Lacorte GA, Kolesnikovas CKM, Vanstreels RET, Steindel M, Catão-Dias JL, Valkiūnas G, Braga ÉM (2013) Parasitological and new molecular-phylogenetic characterization of the malaria parasite Plasmodium tejerai in South American penguins. Parasitol Int 62:165–171PubMedGoogle Scholar
  42. Stokes DL, Boersma PD, de Casenave JL, García-Borboroglu P (2014) Conservation of migratory Magellanic penguins requires marine zoning. Biol Conserv 170:151–161Google Scholar
  43. Taunde PA, Bianchi MV, Perles L, da Silva FS, Guim TN, Stadler RA, André MR, Driemeier D, Pavarini SP (2019) Pathological and molecular characterization of avian malaria in captive Magellanic penguins (Spheniscus magellanicus) in South America. Parasitol Res 118:599–606PubMedGoogle Scholar
  44. Tompkins DM, Gleeson DM (2006) Relationship between avian malaria distribution and an exotic invasive mosquito in New Zealand. J R Soc N Z 36:51–62Google Scholar
  45. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, RatonGoogle Scholar
  46. Valkiūnas G, Iezhova TA (2018) Keys to the avian malaria parasites. Malar J 17:212PubMedPubMedCentralGoogle Scholar
  47. Valkiūnas G, Bensch S, Iezhova TA, Križanauskienė A, Hellgren O, Bolshakov CV (2006) Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92:418–423PubMedGoogle Scholar
  48. Valkiūnas G, Zehtindjiev P, Dimitrov D, Križanauskienė A, Iezhova TA, Bensch S (2008) Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in GenBank. Parasitol Res 102:1185–1193PubMedGoogle Scholar
  49. Valkiūnas G, Palinauskas V, Ilgūnas M, Bukauskaitė D, Dimitrov D, Bernotienė R, Zehtindjiev P, Ilieva M, Iezhova TA (2014) Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife. Parasitol Res 113:2251–2263PubMedGoogle Scholar
  50. Vanstreels R, Parsons N (2014) Malária aviária e outros hemosporídeos aviários. In: Cubas Z, Silva J, Catão-Dias J (eds) Tratado de animais selvagens - medicina veterinária, 2nd edn. Roca, São Paulo, pp 1427–1443Google Scholar
  51. Vanstreels RET, Kolesnikovas CK, Sandri S et al (2014) Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in southern Brazil. PLoS One 9:e94994PubMedPubMedCentralGoogle Scholar
  52. Vanstreels RET, da Silva-Filho RP, Kolesnikovas CKM, Bhering R, Ruoppolo V, Epiphanio S, Amaku M, Junior F, Braga É, Catão-Dias J (2015) Epidemiology and pathology of avian malaria in penguins undergoing rehabilitation in Brazil. Vet Res 46:30PubMedPubMedCentralGoogle Scholar
  53. Vanstreels RET, Braga EM, Catao-Dias JL (2016a) Blood parasites of penguins: a critical review. Parasitology 143:931–956PubMedGoogle Scholar
  54. Vanstreels RET, Capellino F, Silveira P, Braga ÉM, Rodríguez-Heredia SA, Loureiro J, Catão-Dias JL (2016b) Avian malaria (Plasmodium spp.) in captive Magellanic Penguins (Spheniscus magellanicus) from northern Argentina, 2010. J Wildl Dis 52:734–737PubMedGoogle Scholar
  55. Vanstreels RET, Uhart M, Rago V et al (2017) Do blood parasites infect Magellanic penguins (Spheniscus magellanicus) in the wild? Prospective investigation and climatogeographic considerations. Parasitology 144:698–705PubMedGoogle Scholar
  56. Webster T, Hunter S, Argilla L et al (2018) Increased prevalence of avian malaria in hoiho and preparation for future events. In: Proceedings of the 11th Oamaru Penguin Symposium 2018. Royal Society of New Zealand, Oamaru, p 10Google Scholar
  57. Zehtindjiev P, Križanauskienė A, Bensch S, Palinauskas V, Asghar M, Dimitrov D, Scebba S, Valkiūnas G (2012) A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction–based protocols for amplification of the cytochrome b gene. J Parasitol 98:657–666PubMedGoogle Scholar
  58. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ralph Eric Thijl Vanstreels
    • 1
    • 2
    Email author
  • Daniela de Angeli Dutra
    • 3
  • Francisco C. Ferreira-Junior
    • 3
    • 4
  • Renata Hurtado
    • 2
  • Leandro Egert
    • 2
  • Luis Felipe S. P. Mayorga
    • 2
  • Renata C. C. Bhering
    • 2
  • Érika M. Braga
    • 3
  • José Luiz Catão-Dias
    • 1
  1. 1.Laboratory of Wildlife Comparative Pathology (LAPCOM), School of Veterinary MedicineUniversity of São PauloSão PauloBrazil
  2. 2.Institute of Research and Rehabilitation of Marine Animals (IPRAM)CariacicaBrazil
  3. 3.Department of Parasitology, Institute of Biological SciencesFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  4. 4.Center for Conservation Genomics, Smithsonian Conservation Biology InstituteWashingtonUSA

Personalised recommendations