Advertisement

Parasitology Research

, Volume 118, Issue 9, pp 2583–2590 | Cite as

Evidence for camels (Camelus bactrianus) as the main intermediate host of Echinococcus granulosus sensu lato G6/G7 in Mongolia

  • Bolor Bold
  • Franck Boué
  • Christian Schindler
  • Battsetseg Badmaa
  • Belgutei Batbekh
  • Bayanzul Argamjav
  • Chimedtseren Bayasgalan
  • Akira Ito
  • Uranshagai Narankhuu
  • Agiimaa Shagj
  • Jakob Zinsstag
  • Gérald UmhangEmail author
Helminthology - Original Paper

Abstract

Cystic echinococcosis (CE), the parasitic disease caused by the larval stage of Echinococcus granulosus sensu lato (s.l.), is a global public health problem. In Mongolia, despite wide distribution of human CE, not enough information is available on the prevalence and molecular characterization of CE in livestock and its zoonotic linkage with human cases. We investigated the distribution of human CE cases and livestock population using statistical models to get insight into the zoonotic linkage. The incidence of human CE cases increased by a factor of 1.71 for one interquartile range increment in the density of the camel population. No significant association was observed with other livestock species. The samples collected from 96 camels and 15 goats in an endemic region showed a CE prevalence of 19.7% and 6.7%, respectively. All livestock CE were E. granulosus s.l. G6/G7 species of the E. granulosus s.l. complex. The genetic diversity was investigated using the haplotype network based on full cox1 gene analysis of the samples collected from livestock CE and nucleotide sequences previously reported from human CE and wild canids infection in Mongolia. Four haplotypes were identified within the livestock samples, two of which had not been previously reported. A common haplotype was identified among humans, camels, goats, and a wolf, all of which were within the same geographical area. A mixed infection of E. granulosus s.l. G6/G7 with different haplotypes in the intermediate host was identified. To the best of our knowledge, this is the most comprehensive description of the current epidemiological situation of CE in Mongolia with substantial evidence that camels might be the main intermediate host of E. granulosus s.l. G6/G7 in Mongolia. Moreover, our result presents the first report in the country to provide insight into the prevalence of E. granulosus s.l. G6/G7 in livestock.

Keywords

Echinococcus granulosus s.l. G6/G7 Cystic echinococcosis Camel Goat Mongolia 

Notes

Acknowledgments

The authors are greatly thankful to the team of the local veterinary office in Omnogobi province which helped us to collect samples. We also thank Vanessa Bastid and Carine Peytavin de Garam from Anses LRFSN for their skilled technical assistance in the molecular analyses.

Funding source

This work was supported by the Neglected Zoonotic Diseases unit in Department of the Control of Neglected Tropical Diseases, WHO.

Funding source(s) had no involvement in study design, the collection, analysis and interpretation of data, the writing of the report, and in the decision to submit the article for publication.

Compliance with ethical standards

Ethics statement

This work presented here was approved by the Medical Ethics committee of Mongolia (July 2014) and WHO ERC (27 Nov 2015).

Ethical approval

The animals were being processed as part of the normal work of the abattoir. The routine investigation of local veterinary office on animal carcass do not require ethical approval in Mongolia.

Conflict of interest

The authors declare that there is no conflict of interest.

Research data

Statistical data of hospital discharge is available upon request from the National Center for Zoonotic Disease (NCZD). The director of NCZD, Dr. Tsogbadrakh Nyamdorj, is the point of contact. Email address is: tsogbadrakh@nczd.gov.mn.

All relevant data regarding animal sample is within the manuscript and its Supporting Information files.

Supplementary material

436_2019_6391_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)
436_2019_6391_MOESM2_ESM.docx (2.7 mb)
ESM 2 (DOCX 2714 kb)

References

  1. Addy F et al (2017a) Genetic polymorphism and population structure of Echinococcus ortleppi. Parasitology 144:450–458.  https://doi.org/10.1017/S0031182016001840 CrossRefGoogle Scholar
  2. Addy F, Wassermann M, Kagendo D, Ebi D, Zeyhle E, Elmahdi IE, Umhang G, Casulli A, Harandi MF, Aschenborn O, Kern P, Mackenstedt U, Romig T (2017b) Genetic differentiation of the G6/7 cluster of Echinococcus canadensis based on mitochondrial marker genes. Int J Parasitol 47:923–931.  https://doi.org/10.1016/j.ijpara.2017.06.003 CrossRefGoogle Scholar
  3. Alvarez Rojas CA, Romig T, Lightowlers MW (2014) Echinococcus granulosus sensu lato genotypes infecting humans--review of current knowledge. Int J Parasitol 44:9–18.  https://doi.org/10.1016/j.ijpara.2013.08.008 CrossRefGoogle Scholar
  4. Bold B, Hattendorf J, Shagj A, Tserendovdon B, Ayushkhuu T, Luvsandorj A, Zinsstag J, Junghanss T (2018) Patients with cystic echinococcosis in the three national referral centers of Mongolia: a model for CE management assessment. PLoS Negl Trop Dis 12:e0006686.  https://doi.org/10.1371/journal.pntd.0006686 CrossRefGoogle Scholar
  5. Boue F et al (2017) Use of FTA((R)) card methodology for sampling and molecular characterization of Echinococcus granulosus sensu lato in Africa. Exp Parasitol 173:29–33.  https://doi.org/10.1016/j.exppara.2016.12.016 CrossRefGoogle Scholar
  6. Boufana B, Lahmar S, Rebaï W, Ben Safta Z, Jebabli L, Ammar A, Kachti M, Aouadi S, Craig PS (2014) Genetic variability and haplotypes of Echinococcus isolates from Tunisia. Trans R Soc Trop Med Hyg 108:706–714.  https://doi.org/10.1093/trstmh/tru138 CrossRefGoogle Scholar
  7. Budke CM, Jiamin Q, Zinsstag J, Qian W, Torgerson PR (2004) Use of disability adjusted life years in the estimation of the disease burden of echinococcosis for a high endemic region of the Tibetan plateau. Am J Trop Med Hyg 71:56–64CrossRefGoogle Scholar
  8. Casulli A, Interisano M, Sreter T, Chitimia L, Kirkova Z, La Rosa G, Pozio E (2012) Genetic variability of Echinococcus granulosus sensu stricto in Europe inferred by mitochondrial DNA sequences. Infect Genet Evol 12:377–383.  https://doi.org/10.1016/j.meegid.2011.12.014 CrossRefGoogle Scholar
  9. Chinchuluun B et al (2018) Characterization of camel (Camelus bactrianus) echinococcosis from southern Mongolia. MongJAgricSci 23:9–13.  https://doi.org/10.5564/mjas.v23i01.1013 Google Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  11. Craig PS, Hegglin D, Lightowlers MW, Torgerson PR, Wang Q (2017) Echinococcosis: Control and Prevention. Adv Parasitol 96:55–158.  https://doi.org/10.1016/bs.apar.2016.09.002 CrossRefGoogle Scholar
  12. Davaatseren N, Otogondalai A, Nyamkhuu G, Rusher AH (1995) Management of echinococcosis in Mongolia. J Ark Med Soc 92:122–124Google Scholar
  13. Deplazes P et al (2017) Global distribution of alveolar and cystic echinococcosis. Adv Parasitol 95:315–493.  https://doi.org/10.1016/bs.apar.2016.11.001 CrossRefGoogle Scholar
  14. Ebright JR, Altantsetseg T, Oyungerel R (2003) Emerging infectious diseases in Mongolia. Emerg Infect Dis 9:1509–1515.  https://doi.org/10.3201/eid0912.020520 CrossRefGoogle Scholar
  15. Gurbadam A, Nyamkhuu D, Nyamkhuu G, Tsendjav A, Sergelen O, Narantuya B, Batsukh Z, Battsetseg G, Oyun-Erdene B, Uranchimeg B, Otgonbaatar D, Temuulen D, Bayarmaa E, Abmed D, Tsogtsaikhan S, Usukhbayar A, Smirmaul K, Gereltuya J, Ito A (2010) Mongolian and Japanese joint conference on “Echinococcosis: diagnosis, treatment and prevention in Mongolia” June 4, 2009. Parasit Vectors 3:8.  https://doi.org/10.1186/1756-3305-3-8 CrossRefGoogle Scholar
  16. Ito A, Budke CM (2015) The present situation of echinococcoses in Mongolia. J Helminthol 89:680–688.  https://doi.org/10.1017/S0022149X15000620 CrossRefGoogle Scholar
  17. Ito A et al (2013) Echinococcus species from red foxes, corsac foxes, and wolves in Mongolia. Parasitology 140:1648–1654.  https://doi.org/10.1017/S0031182013001030 CrossRefGoogle Scholar
  18. Ito A, Dorjsuren T, Davaasuren A, Yanagida T, Sako Y, Nakaya K, Nakao M, Bat-Ochir OE, Ayushkhuu T, Bazarragchaa N, Gonchigsengee N, Li T, Agvaandaram G, Davaajav A, Boldbaatar C, Chuluunbaatar G (2014) Cystic echinococcoses in Mongolia: molecular identification, serology and risk factors. PLoS Negl Trop Dis 8:e2937.  https://doi.org/10.1371/journal.pntd.0002937 CrossRefGoogle Scholar
  19. Jabbar A, Narankhajid M, Nolan MJ, Jex AR, Campbell BE, Gasser RB (2011) A first insight into the genotypes of Echinococcus granulosus from humans in Mongolia. Mol Cell Probes 25:49–54.  https://doi.org/10.1016/j.mcp.2010.11.001 CrossRefGoogle Scholar
  20. Jezek Z, Rusinko M, Mingir G, Cerenshimid O (1971) Skin test survey of the prevalence of Echinococcus infection in men in the Mongolian People’s Republic. J Hyg Epidemiol Microbiol Immunol 15:435–444Google Scholar
  21. Jezek Z, Rachkovský G, Mingir G, Galbadrakh C (1973) Casoni skin test survey in man in a limited area of the Mongolian People’s Republic. J Hyg Epidemiol Microbiol Immunol 17:422–432Google Scholar
  22. Laurimae T et al (2018a) Molecular phylogeny based on six nuclear genes suggests that Echinococcus granulosus sensu lato genotypes G6/G7 and G8/G10 can be regarded as two distinct species Parasitology 1–9.  https://doi.org/10.1017/S0031182018000719
  23. Laurimae T et al (2018b) The benefits of analysing complete mitochondrial genomes: deep insights into the phylogeny and population structure of Echinococcus granulosus sensu lato genotypes G6 and G7 Infection. Genet Evol 64:85–94.  https://doi.org/10.1016/j.meegid.2018.06.016 CrossRefGoogle Scholar
  24. Lawson JR, Gemmell MA (1983) Hydatidosis and cysticercosis: the dynamics of transmission. Adv Parasitol 22:261–308CrossRefGoogle Scholar
  25. McFadden AM, Muellner P, Baljinnyam Z, Vink D, Wilson N (2016) Use of multicriteria risk ranking of zoonotic diseases in a developing country: case study of Mongolia. Zoonoses Public Health 63:138–151.  https://doi.org/10.1111/zph.12214 CrossRefGoogle Scholar
  26. Murias dos Santos A, Cabezas MP, Tavares AI, Xavier R, Branco M (2016) tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32:627–628.  https://doi.org/10.1093/bioinformatics/btv636 CrossRefGoogle Scholar
  27. Nakao M, Lavikainen A, Yanagida T, Ito A (2013a) Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). Int J Parasitol 43:1017–1029.  https://doi.org/10.1016/j.ijpara.2013.06.002 CrossRefGoogle Scholar
  28. Nakao M, Yanagida T, Konyaev S, Lavikainen A, Odnokurtsev VA, Zaikov VA, Ito A (2013b) Mitochondrial phylogeny of the genus Echinococcus (Cestoda: Taeniidae) with emphasis on relationships among Echinococcus canadensis genotypes. Parasitology 140:1625–1636.  https://doi.org/10.1017/S0031182013000565 CrossRefGoogle Scholar
  29. NSO (2017) http://www.nso.mn/ accension date: 2017
  30. Romig T, Ebi D, Wassermann M (2015) Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol 213:76–84.  https://doi.org/10.1016/j.vetpar.2015.07.035 CrossRefGoogle Scholar
  31. Romig T et al (2017) Ecology and life cycle patterns of Echinococcus species. Adv Parasitol 95:213–314.  https://doi.org/10.1016/bs.apar.2016.11.002 CrossRefGoogle Scholar
  32. Shirmen O, Batchuluun B, Lkhamjav A, Tseveen T, Munkhjargal T, Sandag T, Lkhagvasuren E, Yanagida T, Nishikawa Y, Ito A (2018) Cerebral cystic echinococcosis in Mongolian children caused by Echinococcus canadensis. Parasitol Int 67:584–586.  https://doi.org/10.1016/j.parint.2018.05.006 CrossRefGoogle Scholar
  33. Torgerson PR, Oguljahan B, Muminov AE, Karaeva RR, Kuttubaev OT, Aminjanov M, Shaikenov B (2006) Present situation of cystic echinococcosis in central Asia. Parasitol Int 55(Suppl):S207–S212.  https://doi.org/10.1016/j.parint.2005.11.032 CrossRefGoogle Scholar
  34. Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, Rokni MB, Zhou XN, Fèvre EM, Sripa B, Gargouri N, Fürst T, Budke CM, Carabin H, Kirk MD, Angulo FJ, Havelaar A, de Silva N (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med 12:e1001920.  https://doi.org/10.1371/journal.pmed.1001920 CrossRefGoogle Scholar
  35. Umhang G, Richomme C, Boucher JM, Hormaz V, Boue F (2013) Prevalence survey and first molecular characterization of Echinococcus granulosus in France. Parasitol Res 112:1809–1812.  https://doi.org/10.1007/s00436-012-3245-7 CrossRefGoogle Scholar
  36. Umhang G, Chihai O, Boue F (2014) Molecular characterization of Echinococcus granulosus in a hyperendemic European focus, the Republic of Moldova. Parasitol Res 113:4371–4376.  https://doi.org/10.1007/s00436-014-4112-5 CrossRefGoogle Scholar
  37. Yanagida T, Lavikainen A, Hoberg EP, Konyaev S, Ito A, Sato MO, Zaikov VA, Beckmen K, Nakao M (2017) Specific status of Echinococcus canadensis (Cestoda: Taeniidae) inferred from nuclear and mitochondrial gene sequences. Int J Parasitol 47:971–979.  https://doi.org/10.1016/j.ijpara.2017.07.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bolor Bold
    • 1
    • 2
    • 3
  • Franck Boué
    • 4
  • Christian Schindler
    • 2
    • 3
  • Battsetseg Badmaa
    • 5
  • Belgutei Batbekh
    • 5
  • Bayanzul Argamjav
    • 5
  • Chimedtseren Bayasgalan
    • 5
  • Akira Ito
    • 6
  • Uranshagai Narankhuu
    • 1
  • Agiimaa Shagj
    • 1
  • Jakob Zinsstag
    • 2
    • 3
  • Gérald Umhang
    • 4
    Email author
  1. 1.Department of EpidemiologyNational Center for Zoonotic DiseaseUlaanbaatarMongolia
  2. 2.Epidemiology and Public Health DepartmentSwiss Tropical and Public Health InstituteBaselSwitzerland
  3. 3.University of BaselBaselSwitzerland
  4. 4.Anses LRFSN, Wildlife Surveillance and Eco-epidemiology UnitNational Reference Laboratory for Echinococcus spp., Technopôle agricole et vétérinaireMalzévilleFrance
  5. 5.School of Veterinary MedicineMongolian University of Life SciencesUlaanbaatarMongolia
  6. 6.Department of ParasitologyAsahikawa Medical UniversityAsahikawaJapan

Personalised recommendations