Skip to main content
Log in

Motility and cytoskeletal organisation in the archigregarine Selenidium pygospionis (Apicomplexa): observations on native and experimentally affected parasites

Parasitology Research Aims and scope Submit manuscript

Abstract

Representatives of Apicomplexa perform various kinds of movements that are linked to the different stages of their life cycle. Ancestral apicomplexan lineages, including gregarines, represent organisms suitable for research into the evolution and diversification of motility within the group. The vermiform trophozoites and gamonts of the archigregarine Selenidium pygospionis perform a very active type of bending motility. Experimental assays and subsequent light, electron, and confocal microscopic analyses demonstrated the fundamental role of the cytoskeletal proteins actin and tubulin in S. pygospionis motility and allowed us to compare the mechanism of its movement to the gliding machinery (the so-called glideosome concept) described in apicomplexan zoites. Actin-modifying drugs caused a reduction in the movement speed (cytochalasin D) or stopped the motility of archigregarines completely (jasplakinolide). Microtubule-disrupting drugs (oryzalin and colchicine) had an even more noticeable effect on archigregarine motility. The fading and disappearance of microtubules were documented in ultrathin sections, along with the formation of α-tubulin clusters visible after the immunofluorescent labelling of drug-treated archigregarines. The obtained data indicate that subpellicular microtubules most likely constitute the main motor structure involved in S. pygospionis bending motility, while actin has rather a supportive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CLSM:

confocal laser scanning microscopy

COL:

colchicine

CYT D:

cytochalasin D

DMSO:

dimethyl sulfoxide

FITC:

fluorescein isothiocyanate

IFA:

indirect immunofluorescent assay

IMC:

inner membrane complex

JAS:

jasplakinolide

LM:

light microscopy

ORY:

oryzalin

PBS:

phosphate-buffered saline

PFA:

4% paraformaldehyde

RR:

ruthenium red

SEM:

scanning electron microscopy

SW:

seawater

TEM:

transmission electron microscopy

TRITC:

tetramethylrhodamine isothiocyanate

References

  • Caullery M, Mesnil F (1898) Sur un Sporozoaire aberrant (Siedleckia n. g.). C R Soc Biol 5:1093–1095

    Google Scholar 

  • Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105 (4):1473–1478. https//doi.org/https://doi.org/10.1101/SQB.1973.037.01.069

  • De Souza W, Attias M (2010) Subpellicular microtubules in Apicomplexa and Trypanosomatids. In: de Souza W (ed) Structures and organelles in pathogenic protists. Springer-Verlag, Berlin, Heidelberg, pp 27–62. https://doi.org/10.1007/978-3-642-12863-9

  • Desportes I, Schrével J (2013) The gregarines, the early branching Apicomplexa (2 vols). Treatise on zoology - anatomy, taxonomy, biology. BRILL, Leiden – the Netherlands. 781 pp

  • Dobrowolski JM, Sibley LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84 (6):933–939. https://doi.org/10.1016/S0092-8674(00)81071-5

  • Dobrowolski JM, Niesman IR, Sibley LD (1997) Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, act1 and exists primarily in a globular form. Cell Motil Cytoskeleton 37 (3):253–262. https://doi.org/10.1002/(SICI)1097-0169(1997)37:3<253::AID-CM7>3.0.CO;2-7

  • Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN (1998) Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol 28 (7):1007–1013. https://doi.org/10.1016/S0020-7519(98)00076-9

  • Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, Black JA, Ferguson DJ, Tardieux I, Mogilner A, Meissner M (2014) The Toxoplasma acto-myoA motor complex is important but not essential for gliding motility and host cell invasion. PLoS One 9(3):e91819. https://doi.org/10.1371/journal.pone.0091819

  • Fowell RR (1936) The fibrillar structures of Protozoa, with special reference to schizogregarines of the genus Selenidium. J R Micr Soc 56:12–28

    Article  Google Scholar 

  • Fromes Y, Gounon P, Veitia R, Bissery MC, Fellous A (1996) Influence of microtubule-associated proteins on the differential-effects of paclitaxel and docetaxel. J Protein Chem 15(4):377–388

    Article  CAS  PubMed  Google Scholar 

  • Ghazali M, Schrével J (1993) Myosin like protein (Mr 175,000) in Gregarina blaberae. J Eukaryot Microbiol 40(3):345–354

  • Ghazali M, Schrével J (1995) Identification and localization of proteins in gregarines that are immunologically related to smooth muscle α-actinin. Eur J Protistol 31 (3):292–301. https://doi.org/10.1016/S0932-4739(11)80093-3

  • Ghazali M, Philippe M, Deguercy A, Gounon P, Gallo J, Schrével J (1989) Actin and spectrin-like (Mr= 260-240 000) proteins in gregarines. Biol Cell 67(2):173–184. https://doi.org/10.1111/j.1768-322X.1989.tb00860.x

  • Håkansson S, Morisaki H, Heuser J, Sibley LD (1999) Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10(11):3539–3547. https://doi.org/10.1091/mbc.10.11.3539

  • Heintzelman MB (2004) Actin and myosin in Gregarina polymorpha. Cell Motil Cytoskeleton 58(2):83–95. https://doi.org/10.1002/cm.10178

  • Heintzelman MB, Mateer MJ (2008) GpMyoF, a WD40 repeat-containing myosin associated with the myonemes of Gregarina polymorpha. J Parasitol 94(1):158–168. https://doi.org/10.1645/GE-1339.1

  • Kappe SH, Buscaglia C, Bergman LW, Coppens I, Nussenzweig V (2004) Apicomplexan gliding motility and host cell invasion: overhauling the motor model. Trends Parasitol 20(1):13–16. https://doi.org/10.1016/j.pt.2003.10.011

  • Keeley A, Soldati D (2004) The glideosome a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol 14(10):525–528. https://doi.org/10.1016/j.tcb.2004.08.002

  • Kováčiková M, Vaškovicová N, Nebesářová J, Valigurová A (2018) Effect of jasplakinolide and cytochalasin D on cortical elements involved in the gliding motility of the eugregarine Gregarina garnhami (Apicomplexa). Eur J Protistol 66:97–114. https://doi.org/10.1016/j.ejop.2018.08.006

  • Kumpula EP, Pires I, Lasiwa D, Piirainen H, Bergmann U, Vahokoski J, Kursula I (2017) Apicomplexan actin polymerization depends on nucleation. Sci Rep 7(12137):1–10. https://doi.org/10.1038/s41598-017-11330-w

  • Leander BS (2006) Ultrastructure of the archigregarine Selenidium vivax (Apicomplexa) – a dynamic parasite of sipunculid worms (host: Phascolosoma agassizii). Mar Biol Res 2(3):178–190. https://doi.org/10.1080/17451000600724395

  • Leander BS (2007) Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida). Zool Scripta 36(2):213–227. https://doi.org/10.1111/j.1463-6409.2007.00272.x

  • Leander BS (2008) Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol 24(2):60–67. https://doi.org/10.1016/j.pt.2007.11.005

  • Leander BS, Harper JT, Keeling PJ (2003) Molecular phylogeny and surface morphology of marine aseptate gregarines (Apicomplexa) Selenidium spp. and Lecudina spp. J Parasitol 89(6):1191–1205. https://doi.org/10.1645/GE-3155

  • Matuschewski K, Schüler H (2008) Actin/myosin-based gliding motility in apicomplexan parasites. In: Burleigh BA, Soldati-Favre D (eds) Molecular mechanisms of parasite invasion, Subcell Biochem, vol 47. Springer, New York, NY, pp 110–120. https://doi.org/10.1007/978-0-387-78267-6_9

  • Mellor JS, Stebbings H (1980) Microtubules and the propagation of bending waves by the archigregarine, Selenidium fallax. J Exp Biol 87:149–161

    CAS  PubMed  Google Scholar 

  • Morrissette NS, Sibley LD (2002a) Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 66(1):21–38. https://doi.org/10.1128/MMBR.66.1.21-38.2002

  • Morrissette NS, Sibley D (2002b) Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci 115(5):1017–1025

    CAS  PubMed  Google Scholar 

  • Morrissette NS, Murray JM, Roos DS (1997) Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 110:35–42

    CAS  PubMed  Google Scholar 

  • Münter S, Sabass B, Selhuber-Unkel C, Kudryashev M, Hegge S, Engel U, Spatz JP, Matuschewski K, Schwarz US, Frischknecht F (2009) Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites. Cell Host Microbe 6(6):551–562. https://doi.org/10.1016/j.chom.2009.11.007

  • Opitz C, Soldati D (2002) The glideosome: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 45(3):597–604. https://doi.org/10.1046/j.1365-2958.2002.03056.x

  • Paskerova GG, Miroliubova TS, Diakin A, Kováčiková M, Valigurová A, Gillou L, Aleoshin VV, Simdyanov TG (2018) Fine structure and molecular phylogeny of two marine gregarines, Selenidium pygospionis n. sp. and S. pherusae n. sp., with notes on the phylogeny of Archigregarinida (Apicomplexa). Protist 169(6):826–852. https://doi.org/10.1016/j.protis.2018.06.004

  • Rueckert S, Horák A (2017) Archigregarines of the english channel revisited: new molecular data on Selenidium species including early described and new species and the uncertainties of phylogenetic relationships. PLoS One 12(11):e0187430. https://doi.org/10.1371/journal.pone.0187430

  • Schmitz S, Grainger M, Howell S, Calder LJ, Gaeb M, Pinder JC, Holder AA, Veigel C (2005) Malaria parasite actin filaments are very short. J Mol Biol 349(1):113–125. https://doi.org/10.1016/j.jmb.2005.03.056

  • Schmitz S, Schaap IA, Kleinjung J, Harder S, Grainger M, Calder L, Rosenthal PB, Holder AA, Veigel C (2010) Malaria parasite actin polymerization and filament structure. J Biol Chem 285(47):36577–36585. https://doi.org/10.1074/jbc.M110.142638

  • Schrével J (1971a) Observations biologiques et ultrastructurales sur les Selenidiidae et leurs conséquences sur la systématique des Grégarinomorphes. J Protozool 18(3):448–470

    Article  Google Scholar 

  • Schrével J (1971b) Contribution à l’étude des Selenidiidae parasites d’annélides polychètes. II Ultrastructure de quelques trophozoïtes. Protistologica 7:101–130

  • Schrével J, Desportes I (2015) Gregarines. In: Mehlhorn H (ed) Encyclopedia of parasitology. Springer-Verlag, Berlin, Heidelberg, 47 pp

    Google Scholar 

  • Schrével J, Philippe M (1993) The gregarines. In: Kreier JP, Baker JR (ed) Parasitic protozoa. 2nd edition. Academic Press, pp 133-245

  • Schrével J, Buissonnets S, Metais M (1974) Action de l’urée sur la motilité et les microtubules sous pelliculaires du protozoaire Selenidium hollandei. C R Acad Sci Paris 278:2201–2204

    Google Scholar 

  • Schrével J, Valigurová A, Prensier G, Chambouvet I, Florent I, Guillou L (2016) Ultrastructure of Selenidium pendula, the type species of archigregarines, and phylogenetic relations to other marine Apicomplexa. Protist 167(4):339–368. https://doi.org/10.1016/j.protis.2016.06.001

  • Simdyanov TG, Kuvardina ON (2007) Fine structure and putative feeding mechanism of the archigregarine Selenidium orientale (Apicomplexa: Gregarinomorpha). Eur J Protistol 43(1):17–25. https://doi.org/10.1016/j.ejop.2006.09.003

  • Simdyanov TG, Paskerova GG, Valigurová A, Diakin A, Kováčiková M, Schrével J, Gillou L, Dobrovolskij AA, Aleoshin VV (2018) First ultrastructural and molecular phylogenetic evidence from the blastogregarines, an early branching lineage of plesiomorphic Apicomplexa. Protist 169(5):697–726. https://doi.org/10.1016/j.protis.2018.04.006

  • Soldati D, Foth JB, Cowman AF (2004) Molecular and functional aspects of parasite invasion. Trends Parasitol 20(12):567–574. https://doi.org/10.1016/j.pt.2004.09.009

  • Stebbings H, Boe GS, Garlick PR (1974) Microtubules and movement in the archigregarine Selenidium fallax. Cell Tissue Res 348(3):331–345. https://doi.org/10.1007/BF00224261

  • Stokkermans TJ, Schwartzman JD, Keenan K, Morrissette NS, Tilney LG, Roos DS (1996) Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp Parasitol 84(3):355–370. https://doi.org/10.1006/expr.1996.0124

  • Tardieux I, Baum J (2016) Reassessing the mechanics of parasite motility and host-cell invasion. J Cell Biol 214(5):507–515. https://doi.org/10.1083/jcb.201605100

  • Valigurová A, Vaškovicová N, Diakin A, Paskerova GG, Simdyanov TG, Kováčiková M (2017) Motility in blastogregarines (Apicomplexa): native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements. PLoS One 12(6):e0179709. https://doi.org/10.1371/journal.pone.0179709

  • Valigurová A, Vaškovicová N, Musilová M, Schrével J (2013) The enigma of eugregarine epicytic folds: where gliding motility originates? Front Zool 10(1):57. https://doi.org/10.1186/1742-9994-10-57

  • Wakeman KC, Horiguchi T (2017) Morphology and molecular phylogeny of the marine gregarine parasite Selenidium oshoroense n. sp. (Gregarina, Apicomplexa) isolated from a northwest pacific hydroides Ezoensis okuda 1934 (Serpulidae, Polychaeta). Mar Biodiv 48:1498. https://doi.org/10.1007/s12526-017-0643-1

  • Wakeman KC, Heintzelman MB, Leander BS (2014) Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (Apicomplexa). Protist 165(4):493–511. https://doi.org/10.1016/j.protis.2014.05.007

  • Wetzel DM, Hakansson S, Hu K, Roos D, Sibley LD (2003) Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 14:396–406. https://doi.org/10.1091/mbc.e02-08-0458

  • Whitelaw JA, Latorre-Barragan F, Gras S, Pall GS, Leung JM, Heaslip A, Egarter S, Andenmatten N, Nelson SR, Warshaw DM, Ward GE, Meissner M (2017) Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion. BMC Biol 15:1. https://doi.org/10.1186/s12915-016-0343-5

Download references

Acknowledgements

Financial support for MK, AV, and AD was provided by the Czech Science Foundation, project No. GBP505/12/G112 (ECIP - Centre of excellence). NV received financial support from MEYS CR (LO1212) and EC (CZ.1.05/2.1.00/01.0017); GGP, from St. Petersburg State University (Grants 1.42.1493.2015, 1.42.1099.2016, project 109-9017); GGP and TGS, from the Russian Foundation for Basic Research (Grant 18-04-00324). We are grateful to Prof. Dominique Soldati-Favre (University of Geneva) for providing the monoclonal anti-actin antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdaléna Kováčiková.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Section Editor: David S. Lindsay

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andrei Diakin was deceased on 5 November 2018

Electronic supplementary material

Online Resource 1

Bending motility of Selenidium pygospionis incubated in seawater. (MP4 1730 kb)

Online Resource 2

Modified motility of Selenidium pygospionis after treatment with 10 μm oryzalin for 180 min. (MP4 6291 kb)

Online Resource 3

Modified motility of Selenidium pygospionis after treatment with 100 mM colchicine for 40–50 min. (MP4 4240 kb)

Online Resource 4

Modified motility of Selenidium pygospionis after treatment with 30 μm JAS for 150–180 min. (MP4 4311 kb)

Online Resource 5

Modified motility of Selenidium pygospionis after treatment with 30 μm cytochalasin D for 120 min. (MP4 2282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kováčiková, M., Paskerova, G.G., Diakin, A. et al. Motility and cytoskeletal organisation in the archigregarine Selenidium pygospionis (Apicomplexa): observations on native and experimentally affected parasites. Parasitol Res 118, 2651–2667 (2019). https://doi.org/10.1007/s00436-019-06381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-019-06381-z

Keywords

Navigation