Parasitology Research

, Volume 118, Issue 6, pp 1799–1810 | Cite as

Is species identification of Echinostoma revolutum using mitochondrial DNA barcoding feasible with high-resolution melting analysis?

  • Kittisak Buddhachat
  • Thapana ChontananarthEmail author
Helminthology - Original Paper


The taxonomic evaluation of Echinostoma species is controversial. Echinostoma species are recognized as complex, leading to problems associated with accurate identification of these species. The aim of this study was to test the feasibility of using DNA barcoding of cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) conjugated with high-resolution melting (HRM) analysis to identify Echinostoma revolutum. HRM using COI and ND1 was unable to differentiate between species in the “revolutum complex” but did distinguish between two isolates of 37-collar-spined echinostome species, including E. revolutum (Asian lineage) and Echinostoma sp. A from different genera, e.g., Hypoderaeum conoideum, Haplorchoides mehrai, Fasciola gigantica, and Thapariella anastomusa, based on the Tm values derived from HRM analysis. Through phylogenetic analysis, a new clade of the cryptic species known as Echinostoma sp. A was identified. In addition, we found that the E. revolutum clade of ND1 phylogeny obtained from the Thailand strain was from a different lineage than the Eurasian lineage. These findings reveal the complexity of the clade, which is composed of 37-collar-spined echinostome species found in Southeast Asia. Taken together, the systematic aspects of the complex revolutum group are in need of extensive investigation by integrating morphological, biological, and molecular features in order to clarify them, particularly in Southeast Asia.


Complex species Cercaria Intermediate host Metacercaria Snail Southeast Asia 



Finally, we would like to thank Mr. Simon McIver and Dr. Russell Kirk Hollis for their assistance in editing and proofreading this manuscript.

Authors’ contribution

Thapana Chontananarth (TC) contributed, designed, and participated in all part of study, collected and identified the samples. Kittisak Buddhachat (KB) conducted the experiment in the laboratory and analyzed the data. KB and TC were working together for writing the manuscript. All authors have approved this manuscript.

Funding information

This research was supported by Srinakharinwirot University (Research Grant No. 309/2559 and 043/2560).

Supplementary material

436_2019_6322_MOESM1_ESM.xlsx (14 kb)
ESM 1 (XLSX 14 kb)


  1. Anucherngchai S, Chontananarth T (2019) Echinostoma revolutum: development of a high performance DNA-specific primer to demonstrate the epidemiological situations of their intermediate hosts. Acta Trop 189:46–53CrossRefGoogle Scholar
  2. Anucherngchai S, Panich W, Chontananart T (2018) The occurrence of the intestinal trematodes, Echinostoma revolutum (Froelich, 1802) infection in freshwater snails on the agricultural area of Chainat province, Thailand. KHONKAENAG R J 46(1):980–985Google Scholar
  3. Boere CG, Stroud DA (2006) The flyway concept: What it is and what it isn’t. In: Boere GC, Galbraith CA, Stroud DA (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp 40–47Google Scholar
  4. Chai JY (2009) Echinostomes in humans, The biology of echinostomes. Springer, 147–183Google Scholar
  5. Chai JY, Lee SH (2002) Food-borne intestinal trematode infections in the Republic of Korea. Parasitol Int 51:129–154. CrossRefPubMedGoogle Scholar
  6. Chai JY, Sohn WM, Yong TS, Eom KS, Min DY, Hoang EH, Phammasack B, Insisiengmay B, Rim HJ (2012) Echinostome flukes recovered from humans in Khammouane Province, Lao PDR. The Korean J Parasitol 50:269–272CrossRefGoogle Scholar
  7. Chantima K, Chai JY, Wongsawad C (2013) Echinostoma revolutum: freshwater snails as the second intermediate hosts in Chiang Mai, Thailand. Korean J Parasitol 51:183–189. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dehghani M, Mohammadi MA, Rostami S, Shamsaddini S, Mirbadie SR, Harandi MF (2016) High-resolution melting analysis (HRM) for differentiation of four major Taeniidae species in dogs Taenia hydatigena, Taenia multiceps, Taenia ovis, and Echinococcus granulosus sensu stricto. Parasitol Res 115:2715–2720. CrossRefPubMedGoogle Scholar
  9. Detwiler JT, Bos DH, Minchella DJ (2010) Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Mol Phylogenet Evol 55:611–620. CrossRefPubMedGoogle Scholar
  10. Detwiler JT, Zajac AM, Minchella DJ, Belden LK (2012) Revealing cryptic parasite diversity in a definitive host: echinostomes in muskrats. J Parasitol 98:1148–1155CrossRefGoogle Scholar
  11. Er TK, Chang JG (2012) High-resolution melting: applications in genetic disorders. Clin Chim Acta 414:197–201. CrossRefPubMedGoogle Scholar
  12. Fried B, Toledo R (2004) Criteria for species determination in the ‘revolutum’group of Echinostoma. J Parasitol 90:917–917CrossRefGoogle Scholar
  13. Georgieva S, Selbach C, Faltýnková A, Soldánová M, Sures B, Skírnisson K, Kostadinova A (2013) New cryptic species of the ‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit Vectors 6:64. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Georgieva S, Faltýnková A, Brown R, Blasco-Costa I, Soldánová M, Sitko J, Scholz T, Kostadinova A (2014) Echinostoma revolutum (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasit Vectors 7:520. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Group CPW, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL (2009) A DNA barcode for land plants. PNAS 106:12794–12797. CrossRefGoogle Scholar
  16. Hebert PD, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:96–99. CrossRefGoogle Scholar
  17. Kanev I (1994) Life-cycle, delimitation and redescription of Echinostoma revolutum (Froelich, 1802) (Trematoda: Echinostomatidae). Syst Parasitol 28:125–144CrossRefGoogle Scholar
  18. Kanev I, Fried B, Radev V (2009) Collar spine models in the genus Echinostoma (Trematoda: Echinostomatidae). Parasitol Res 105:921–927. CrossRefPubMedGoogle Scholar
  19. Kostadinova A, Jones A (2005) Superfamily echinostomatoidea looss, 1899. In: Jones A et al (eds) Key to the trematode. CABI Publishing, UK, pp 5–126Google Scholar
  20. Kostadinova A, Gibson DI, Biserkov V, Ivanova R (2000) A quantitative approach to the evaluation of the morphological variability of two echinostomes, Echinostoma miyagawai Ishii, 1932 and E. revolutum (Frölich, 1802), from Europe. Syst Parasitol 45:1–15CrossRefGoogle Scholar
  21. Kostadinova A, Herniou EA, Barrett J, Littlewood DTJ (2003) Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Syst Parasitol 54:159–176CrossRefGoogle Scholar
  22. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:242–245. CrossRefGoogle Scholar
  23. Morgan J, Blair D (1998) Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda). Parasitology 116:289–297CrossRefGoogle Scholar
  24. Nagataki M, Tantrawatpan C, Agatsuma T, Sugiura T, Duenngai K, Sithithaworn P, Andrews RH, Petney TN, Saijuntha W (2015) Mitochondrial DNA sequences of 37 collar-spined echinostomes (Digenea: Echinostomatidae) in Thailand and Lao PDR reveals presence of two species: Echinostoma revolutum and E. miyagawai. Infect Genet Evol 35:56–62. CrossRefPubMedGoogle Scholar
  25. Noikong W, Wongsawad C (2014) Epidemiology and molecular genotyping of echinostome metacercariae in Filopaludina snails in Lamphun Province, Thailand. Asian Pac J Trop Med 7:26–29. CrossRefPubMedGoogle Scholar
  26. Noikong W, Wongsawad C, Chai JY, Saenphet S, Trudgett A (2014) Molecular analysis of echinostome metacercariae from their second intermediate host found in a localised geographic region reveals genetic heterogeneity and possible cryptic speciation. PLoS Negl Trop Dis 8:2778. CrossRefGoogle Scholar
  27. Nylander J (2004) MrModeltest 2.3. Computer program and documentation distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  28. Rambaut A (2012) FigTree v1. 4. University of Edinburgh, Edinburgh, UKGoogle Scholar
  29. Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. CrossRefGoogle Scholar
  31. Saijuntha W, Sithithaworn P, Wongkham S, Laha T, Chilton N, Petney T, Barton M, Andrews RH (2008) Mitochondrial DNA sequence variation among geographical isolates of Opisthorchis viverrini in Thailand and Lao PDR, and phylogenetic relationships with other trematodes. Parasitology 135:1479–1486. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Saijuntha W, Tantrawatpan C, Sithithaworn P, Andrews RH, Petney TN (2011a) Spatial and temporal genetic variation of Echinostoma revolutum (Trematoda: Echinostomatidae) from Thailand and the Lao PDR. Acta Trop 118:105–109. CrossRefPubMedGoogle Scholar
  33. Saijuntha W, Sithithaworn P, Duenngai K, Kiatsopit N, Andrews RH, Petney TN (2011b) Genetic variation and relationships of four species of medically important echinostomes (Trematoda: Echinostomatidae) in South-East Asia. Infect Genet Evol 11:375–381. CrossRefPubMedGoogle Scholar
  34. Santos GB, Espínola SM, Ferreira HB, Margis R, Zaha A (2013) Rapid detection of Echinococcus species by a high-resolution melting (HRM) approach. Parasit Vectors 6:327. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sohn WM, Chai JY, Yong TS, Eom KS, Yoon CH, Sinuon M, Socheat D, Lee SH (2011) Echinostoma revolutum infection in children, Pursat Province. Cambodia Emerg Infect Dis 17:117–119. CrossRefPubMedGoogle Scholar
  36. Toledo R, Muñoz-Antoli C, Esteban JG (2000) The life-cycle of Echinostoma friedi n. sp.(Trematoda: Echinostomatidae) in Spain and a discussion on the relationships within the revolutum' group based on cercarial chaetotaxy. Syst Parasitol 45:199–217CrossRefGoogle Scholar
  37. Vossen RH, Aten E, Roos A, den Dunnen JT (2009) High-resolution melting analysis (HRMA)—more than just sequence variant screening. Hum Mutat 30:860–866. CrossRefPubMedGoogle Scholar
  38. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
  2. 2.Excellence Center in Veterinary BiosciencesChiang Mai UniversityChiang MaiThailand
  3. 3.Applied Parasitology Research Laboratory, Department of Biology, Faculty of ScienceSrinakharinwirot UniversityBangkokThailand
  4. 4.Center of Excellence in Animal, Plant and Parasite BiotechnologySrinakharinwirot UniversityBangkokThailand

Personalised recommendations