Advertisement

Parasitology Research

, Volume 118, Issue 4, pp 1215–1223 | Cite as

In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants

  • G. G. AlowanouEmail author
  • P. A. Olounladé
  • G. C. Akouèdegni
  • A. M. L. Faihun
  • D. O. Koudandé
  • S. Hounzangbé-Adoté
Helminthology - Original Paper
  • 23 Downloads

Abstract

Gastrointestinal nematodes remain a major constraint on the health, welfare, and production of small ruminants. This study was conducted to evaluate three plant extracts (from Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis) as effective remedies against gastrointestinal parasites of small ruminants. Phytochemical screening was conducted on the plant leaves, and the potential anthelmintic properties of these plants were tested in vitro on Haemonchus contortus using the egg hatch, larval migration, and adult worm motility assays. The phytochemical screening of the leaves revealed the presence of several bioactive components in all the plants. The number of eggs that hatched was reduced in a concentration-dependent manner (p < 0.01) upon treatment with the methanol extract of B. ferruginea and the acetone extracts of C. glutinosum and M. inermis. The inhibitory effect of the acetone extract of B. ferruginea and the methanol extracts of C. glutinosum and M. inermis was not concentration-dependent (p > 0.05). There was a significant difference (p < 0.05) in the reduction in larval migration between the lowest concentrations (75 to 150 μg/mL) and the highest concentrations (300 to 1200 μg/mL) of plant extracts. The ability of plant extracts to affect the mobility of the adult worms was not concentration-dependent (p > 0.05); however, it was dependent on the time of incubation (p < 0.01). At the highest concentration (2400 μg/mL), all adult worms were motionless after 24 h of exposure, while at the lowest concentration (< 150 μg/mL), this occurred after 48 h of exposure. M. inermis and C. glutinosum extracts were more effective than B. ferruginea extracts (p < 0.05). Overall, these results suggest that these plants used by small-scale farmers possess antiparasitic properties useful for helminthiasis control. However, the effects of the plants remain to be confirmed via in vivo assays and toxicity tests in further studies.

Keywords

Bridelia ferruginea Combretum glutinosum Haemonchus contortus Mitragyna inermis Anthelmintic activity 

Notes

Acknowledgements

This work was supported mainly by the INTERNATIONAL FOUNDATION FOR SCIENCE (IFS) and the Competitive Research Fund of the University of Abomey-Calavi. This study would not have been completed without the traditional healers and small-scale farmers of Benin and the staff of the Laboratory of Ethnopharmacology and Animal Health, FSA, UAC.

Compliance with ethical standards

Ethics approval and consent to participate

The present study was approved and conducted in accordance with the guidelines of the Ethical Committee of University of Abomey – Calavi (EC approval 2015/1134), and after receiving approval, all experiments were conducted using the guidelines of the World Association for the Advancement of Veterinary Parasitology (WAAVP). In addition, it is important to note that consent was obtained from all participants, especially from the animal owners of South and North Benin, who usually use the three plants to treat their animals against parasites of the ruminant gastrointestinal tract.

Consent to publish

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adamu M, Naidoo V, Eloff JN (2013) Efficacy and toxicity of thirteen plant leaf acetone extracts used in ethnoveterinary medicine in South Africa on egg hatching and larval development of Haemonchus contortus. BMC Vet Res 9:38.  https://doi.org/10.1186/1746-6148-9-38 CrossRefGoogle Scholar
  2. Ademola IO, Fagbemi BO, Idowu SO (2005) Anthelmintic activity of extracts of Spondias mombin against gastrointestinal nematodes of sheep: studies in vitro and in vivo. Trop Anim Health Prod 37(3):223–235CrossRefGoogle Scholar
  3. Alissou B (2013) Usages, disponibilité et caractéristiques dendrométriques des ligneux médicinaux: Bridelia ferruginea Benth, Combretum glutinosum Perr. et Mitragyna inermis (Willd.) O. Ktze dans les zones agro-climatiques du Bénin. Mémoire de master professionnel en agronomie: Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, pp 87Google Scholar
  4. Alowanou GG, Olounladé AP, Azando EVB, Dédéhou VFGN, Daga FD, Hounzangbé-Adoté SM (2015) A review of Bridelia ferruginea, Combretum glutinosum and Mitragyna inermis plants used in zootherapeutic remedies in West Africa: historical origins, current uses and implications for conservation. J Appl Biosci 87:8003–8014CrossRefGoogle Scholar
  5. Attindéhou S, Houngnimassoun MA, Salifou S, Biaou CF (2012) Inventorying of herbal remedies used to control small ruminant’s parasites in Southern Benin. Int Multidiscip Res J 2:14–16Google Scholar
  6. Azando EVB, Hounzangbé-Adoté MS, Olounladé PA, Brunet S, Fabre N, Valentin A (2011) Involvement of tannins and flavonoids in the in vitro effects of Newbouldia laevis and Zanthoxylum zanthoxyloïdes extracts on the exsheathment of third-stage infective larvae of gastrointestinal nematodes. Vet Parasitol 180:292–297CrossRefGoogle Scholar
  7. Coles GC, Bauer C, Borgsteede FHM, Greerts S, Klei TR, Taylor MA (1992) World association for the advancement of veterinary parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 44:35–44CrossRefGoogle Scholar
  8. D’Assonville JA, Janovsky E, Versley A (1996) In vitro screening of Haemonchus contortus third stage larvae for ivermectin resistance. Vet Parasitol 61:73–80CrossRefGoogle Scholar
  9. Dédéhou VFGN, Olounladé PA, Adenilé AD, Azando EVB, Alowanou GG, Daga FD, Hounzangbé-Adoté MS (2014) Effets in vitro des feuilles de Pterocarpus erinaceus et des cosses de fruits de Parkia biglobosa sur deux stades du cycle de développement de Haemonchus contortus nématode parasite gastro-intestinal de petits ruminants. J Anim Plant Sci 22:3368–3378Google Scholar
  10. Diehl MS, Atindehou KK, Téré H, Betscharta B (2004) Prospect for anthelminthic plants in the Ivory Coast using ethnobotanical criteria. J Ethnopharmacol 2(3):277–284CrossRefGoogle Scholar
  11. Djoueché CM, Azebaze AB, Dongmo AB (2011) Investigation of plants used for the ethnoveterinary control of gastrointestinal parasites in Bénoué region, Cameroon. Tropicultura 29:205–211Google Scholar
  12. Eloff JN (1998) Which extractant should be used for the screening and isolation of antimicrobial components from plants? J Ethnopharmacol 60:1–8CrossRefGoogle Scholar
  13. Hammond JA, Fielding D, Bishop SC (1997) Prospects for anthelmintic plants in tropical veterinary medicine. Vet Res Commun 21:213–228CrossRefGoogle Scholar
  14. Hoste H, Jackson F, Athanasiadou S, Thamsborg S, Hoskin SO (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol 22:253–261CrossRefGoogle Scholar
  15. Houghton PJ, Raman A (1998) Laboratory handbook for the fractionation of natural extracts, 1st edn. Ed Chapman and Hall, New York, p 199CrossRefGoogle Scholar
  16. Hounzangbé-Adoté MS, Paolini V, Fouraste I, Moutairou K, Hoste H (2005) In vitro effects of four tropical plants on three life-cycle stages of the parasitic nematode, Haemonchus contortus. Res Vet Sci 78:155–160CrossRefGoogle Scholar
  17. Kaboré A, Tamboura H, Belem AMG, Traoré A (2007) Traitements ethno-vétérinaires des parasitoses digestives des petits ruminants dans le plateau central du Burkina Faso. Int J Biol Chem Sci 1:297–304Google Scholar
  18. Koné WM, Atindehou KK (2007) Ethnobotanical inventory of medicinal plants used in traditional veterinary medicine in Northern Côte d’Ivoire (West Africa). S Afr J Bot 74:76–8416CrossRefGoogle Scholar
  19. Koné WM, Atindehou KK, Dossahoua T, Betschart B (2005) Anthelmintic activity of medicinal plants used in Northern Côte d’Ivoire against intestinal helminthiasis. Pharm Biol 43(1):72–78.  https://doi.org/10.1080/13880200590903408 CrossRefGoogle Scholar
  20. Lasisi AA, Kareem SO (2011) Evaluation of anthelmintic activity of the stem bark extract and chemical constituents of Bridelia ferruginae (Benth) Euphorbiaceae. Afr J Plant Sci 5(8): 469–474Google Scholar
  21. MAEP (2011) Plan stratégique de relance du secteur agricole (PSRSA), Cotonou, République du Bénin, Octobre 2011, pp 112. http://extwprlegs1.fao.org/docs/pdf/ben149176.pdf
  22. Makkar HPS, Sidhuraju P, Becker K (2007) Plant secondary metabolites. In: 1st. Humana Press Inc, New JerseyGoogle Scholar
  23. Maphosa V, Masika PJ, Bizimenyera ES, Eloff JN (2010) In vitro anthelminthic activity of crude aqueous extracts of Aloe ferox, Leonotis leonurus and Elephantorrhiza elephantina against Haemonchus contortus. Trop Anim Health Prod 42:301–307CrossRefGoogle Scholar
  24. Mengistu G, Hoste H, Karonen M, Salminen J-P, Hendriks WH, Pellikaan WF (2017) The in vitroanthelmintic properties of browse species against Haemonchus contortus is determined by the polyphenol content and composition. Vet Parasitol 237:110–116CrossRefGoogle Scholar
  25. Mini KP, Venkateswaran KV, Gomathinayagam S, Selvasubramanian S, Bijargi SR (2013) In vitro anthelmintic effect of aqueous and ethanol extract of Aristolochia indica against Haemonchus contortus. JPPA 3:148–158Google Scholar
  26. Neal MJ (2002) Medical pharmacology at a glance, 1st edn. Blackwell Science, OxfordGoogle Scholar
  27. R Core Team (2013) A language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 24 Feb 2017
  28. Rabel B, McGregor P, Dough G (1994) Improved bioassay for estimation of effects of ovine gastrointestinal inhibitoty mucus and on nematode larval migration anthelminthic. Int J Parasitol 24:671–676CrossRefGoogle Scholar
  29. Salifou S (1996) Nématodes et nématodose du tube digestif des petits ruminants du Sud Bénin : Taxonomie, Epidémiologie et les facteurs de variation. Thèse de doctorat, Université Cheikh Anta Diop de Dakar, Sénégal, pp 162Google Scholar
  30. Sibanda BJS, Dube AB (2014) Beef cattle development initiatives: a case of Matobo A2 Resettlement farms in Zimbabwe. Glob J Anim Sci Res 2(3):197–204Google Scholar
  31. Stein PA, Georges SD, Rolfe PF, Hosking BC (2011) Safety and efficacy against fourth-stage gastrointestinal nematode larvae, of monepantel in 6-week old lambs. Vet Parasitol 185(2–4):339–342Google Scholar
  32. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York ISBN 0 - 387-95457-0CrossRefGoogle Scholar
  33. Wabo-Poné J, Yondo J, Fossi TO, Komtangi MC, Bilong-Bilong CF, Mpoame M (2011) The in vitro effects of Chenopodium ambrosioides (Chenopodiaceae) extracts on the parasitic nematode Heligmosomoides bakeri (Nematoda, Heligmosomatidae). J Pharmacogn Phytother 3:56–62Google Scholar
  34. Zangueu CB, Olounlade AP, Ossokomack M, Djouatsa YNN, Alowanou GG, Azebaze AGB, Llorent-Martínez EJ, Fernández de Córdova ML, Dongmo AB, Hounzangbe-Adote MS (2018) In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus. BMC Vet Res 14:147–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences AgronomiquesUniversité d’Abomey-CalaviCotonouBénin
  2. 2.Laboratoire de Sciences Animales et Halieutiques, Unité de Recherche en Santé Globale et Environnement, Ecole de Gestion et d’Exploitation des Systèmes d’ElévageUniversité Nationale d’Agriculture de Porto-NovoPorto-NovoBénin
  3. 3.Laboratoire de Recherches Zootechnique, Vétérinaire et HalieutiqueInstitut National des Recherches Agricoles du BéninCotonouBénin

Personalised recommendations