Advertisement

In vitro schistosomicidal activity of tamoxifen and its effectiveness in a murine model of schistosomiasis at a single dose

  • Rosimeire N. Oliveira
  • Sheila A. P. Corrêa
  • Karen M. Vieira
  • Tiago Mendes
  • Silmara M. AllegrettiEmail author
  • Danilo C. MiguelEmail author
Treatment and Prophylaxis - Original Paper
  • 112 Downloads

Abstract

Schistosomiasis is a neglected tropical disease affecting 220 million people worldwide. Praziquantel has proven to be effective against this parasitic disease, though there are increasing concerns regarding tolerance/resistance that calls for new drugs. Repurposing already existing and well-known drugs has been a desirable approach since it reduces time, costs, and ethical concerns. The anti-cancer drug tamoxifen (TAM) has been used worldwide for several decades to treat and prevent breast cancer. Previous reports stated that TAM affects Schistosoma hormonal physiology; however, no controlled schistosomicidal in vivo assays have been conducted. In this work, we evaluated the effect of TAM on female and male Schistosoma mansoni morphology, motility, and egg production. We further assessed worm survival and egg production in S. mansoni-infected mice. TAM induced morphological alterations in male and female parasites, as well as in eggs in vitro. Furthermore, in our in vivo experiments, one single dose of intraperitoneal TAM citrate reduced the total worm burden by 73% and led to a decrease in the amount of eggs in feces and low percentages of immature eggs in the small intestine wall. Eggs obtained from TAM citrate-treated mice were reduced in size and presented hyper-vacuolated structures. Our results suggest that TAM may be repurposed as a therapeutic alternative against S. mansoni infections.

Keywords

Drug repurposing Egg Experimental treatment Schistosoma mansoni Tamoxifen 

Notes

Acknowledgments

We thank the research funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the postgraduate scholarships granted to R.N.O., S.A.P.C., K.M.V., and T.M.

Authors’ contributions

Designed the study: R.N.O., S.M.A., and D.C.M.; performed the experiments: R.N.O., S.A.P.C., K.M.V., and D.C.M; analyzed the data: R.N.O., T.M., S.M.A., and D.C.M.; wrote the paper: T.M., S.M.A., and D.C.M.

Funding information

FAPESP funds research conducted in S.M.A. and D.C.M.’s laboratory at UNICAMP (process nos. 16/07137-0 and 14/21129-4).

Compliance with ethical standards

The Ethics Commission approved all experiments using rodents (CEUA/UNICAMP, protocol no. 2170-1).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aihara T, Yokota I, Hozumi Y, Aogi K, Iwata H, Tamura M, Fukuuchi A, Makino H, Kim R, Andoh M, Tsugawa K, Ohno S, Yamaguchi T, Ohashi Y, Watanabe T, Takatsuka Y, Mukai H (2014) Anastrozole versus tamoxifen as adjuvant therapy for Japanese postmenopausal patients with hormone-responsive breast cancer: efficacy results of long-term follow-up data from the N-SAS BC 03 trial. Breast Cancer Res Treat 148:337–343.  https://doi.org/10.1007/s10549-014-3155-8 CrossRefGoogle Scholar
  2. Altan N, Chen Y, Schindler M, Simon SM (1999) Tamoxifen inhibits acidification in cells independent of the estrogen receptor. Proc Natl Acad Sci U S A 96:4432–4437CrossRefPubMedCentralGoogle Scholar
  3. Bhattacharya P, Abderrahman B, Jordan VC (2017) Tamoxifen decreases mortality, but how? J Clin Oncol 35:379.  https://doi.org/10.1200/jco.2016.69.1618 CrossRefGoogle Scholar
  4. Burke ML, Jones MK, Gobert GN, Li YS, Ellis MK, McManus DP (2009) Immunopathogenesis of human schistosomiasis. Parasite Immunol 31:163–176.  https://doi.org/10.1111/j.1365-3024.2009.01098.x CrossRefGoogle Scholar
  5. Cowan N, Keiser J (2015) Repurposing of anticancer drugs: in vitro and in vivo activities against Schistosoma mansoni. Parasit Vectors 8:417.  https://doi.org/10.1186/s13071-015-1023-y CrossRefPubMedCentralGoogle Scholar
  6. de Oliveira RN, Rehder VL, Oliveira AS, Jeraldo Vde L, Linhares AX, Allegretti SM (2014) Anthelmintic activity in vitro and in vivo of Baccharis trimera (Less) DC against immature and adult worms of Schistosoma mansoni. Exp Parasitol 139:63–72.  https://doi.org/10.1016/j.exppara.2014.02.010 CrossRefGoogle Scholar
  7. de Oliveira CNF, Frezza TF, Garcia VL, Figueira GM, Mendes TMF, Allegretti SM (2017a) Schistosoma mansoni: In vivo evaluation of Phyllanthus amarus hexanic and ethanolic extracts. Exp Parasitol 183:56–63.  https://doi.org/10.1016/j.exppara.2017.10.008 CrossRefGoogle Scholar
  8. de Oliveira RN, Dos Santos KR, Mendes TMF, Garcia VL, Santos Oliveira AS, de Lourdes Sierpe Jeraldo V, Allegretti SM (2017b) Sesquiterpenes evaluation on Schistosoma mansoni: survival, excretory system and membrane integrity. Biomed Pharmacother 90:813–820.  https://doi.org/10.1016/j.biopha.2017.04.058 CrossRefGoogle Scholar
  9. DeGregorio MW, Wilbur BJ, Coronado E, Osborne CK (1987) Serum tamoxifen concentrations in the athymic nude mouse after three methods of administration. Cancer Chemother Pharmacol 20:316–318CrossRefGoogle Scholar
  10. Delgado VS, Suarez DP, Cesari IM, Incani RN (1992) Experimental chemotherapy of Schistosoma mansoni with praziquantel and oxamniquine: differential effect of single or combined formulations of drugs on various strains and on both sexes of the parasite. Parasitol Res 78:648–654CrossRefGoogle Scholar
  11. Eissa MM, Amer EI, El Sawy SM (2011) Leishmania major: activity of tamoxifen against experimental cutaneous leishmaniasis. Exp Parasitol 128:382–390.  https://doi.org/10.1016/j.exppara.2011.05.009 CrossRefGoogle Scholar
  12. Escobedo G, Palacios-Arreola MI, Olivos A, Lopez-Griego L, Morales-Montor J (2013) Tamoxifen treatment in hamsters induces protection during taeniosis by Taenia solium. Biomed Res Int 2013:280496.  https://doi.org/10.1155/2013/280496 CrossRefGoogle Scholar
  13. Frezza TF, de Souza ALR, Ribeiro Prado CC, de Oliveira CNF, Gremião MPD, Giorgio S, Dolder MAH, Joazeiro PP, Allegretti SM (2015) Effectiveness of hyperbaric oxygen for experimental treatment of schistosomiasis mansoni using praziquantel-free and encapsulated into liposomes: assay in adult worms and oviposition. Acta Trop 150:182–189.  https://doi.org/10.1016/j.actatropica.2015.07.022 CrossRefGoogle Scholar
  14. Giannini AL, Caride EC, Braga VM, Rumjanek FD (1995a) F-10 nuclear binding proteins of Schistosoma mansoni: structural and functional features. Parasitology 110(Pt 2):155–161CrossRefGoogle Scholar
  15. Giannini AL, Linhares SV, Caride EC, Braga VM, Rumjanek FD (1995b) Molecular aspects of Schistosoma mansoni female maturation. Mem Inst Oswaldo Cruz 90:179–184CrossRefGoogle Scholar
  16. Gryseels B, Mbaye A, de Vlas SJ, Stelma FF, Guisse F, van Lieshout L, Faye D, Diop M, Ly A, Tchuem-Tchuente LA, Engels D, Polman K (2001) Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop Med Int Health 6:864–873CrossRefGoogle Scholar
  17. Katz N, Chaves A, Pellegrino J (1972) A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14:397–400Google Scholar
  18. Kennecke H, Ellard S, O’Reilly S, Gelmon A (2006) New guidelines for treatment of early hormone-positive breast cancer with tamoxifen and aromatase inhibitors. BCMJ 48:121–126Google Scholar
  19. Lamberton PH, Hogan SC, Kabatereine NB, Fenwick A, Webster JP (2010) In vitro praziquantel test capable of detecting reduced in vivo efficacy in Schistosoma mansoni human infections. Am J Trop Med Hyg 83:1340–1347.  https://doi.org/10.4269/ajtmh.2010.10-0413 CrossRefPubMedCentralGoogle Scholar
  20. Lavie Y, Cao HT, Volner A, Lucci A, Han TY, Geffen V, Giuliano AE, Cabot MC (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272:1682–1687CrossRefGoogle Scholar
  21. Mandlekar S, Kong AN (2001) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6:469–477CrossRefGoogle Scholar
  22. Miguel DC, Yokoyama-Yasunaka JK, Andreoli WK, Mortara RA, Uliana SR (2007) Tamoxifen is effective against Leishmania and induces a rapid alkalinization of parasitophorous vacuoles harbouring Leishmania (Leishmania) amazonensis amastigotes. J Antimicrob Chemother 60:526–534.  https://doi.org/10.1093/jac/dkm219 CrossRefGoogle Scholar
  23. Miguel DC, Yokoyama-Yasunaka JK, Uliana SR (2008) Tamoxifen is effective in the treatment of Leishmania amazonensis infections in mice. PLoS Negl Trop Dis 2:e249.  https://doi.org/10.1371/journal.pntd.0000249 CrossRefPubMedCentralGoogle Scholar
  24. Miguel DC, Zauli-Nascimento RC, Yokoyama-Yasunaka JK, Katz S, Barbieri CL, Uliana SR (2009) Tamoxifen as a potential antileishmanial agent: efficacy in the treatment of Leishmania braziliensis and Leishmania chagasi infections. J Antimicrob Chemother 63:365–368.  https://doi.org/10.1093/jac/dkn509 CrossRefGoogle Scholar
  25. Miguel DC, Ferraz ML, Alves Rde O, Yokoyama-Yasunaka JK, Torrecilhas AC, Romanha AJ, Uliana SR (2010) The anticancer drug tamoxifen is active against Trypanosoma cruzi in vitro but ineffective in the treatment of the acute phase of Chagas disease in mice. Mem Inst Oswaldo Cruz 105:945–948CrossRefGoogle Scholar
  26. Mwangi IN, Sanchez MC, Mkoji GM, Agola LE, Runo SM, Cupit PM, Cunningham C (2014) Praziquantel sensitivity of Kenyan Schistosoma mansoni isolates and the generation of a laboratory strain with reduced susceptibility to the drug. Int J Parasitol Drugs Drug Resist 4:296–300.  https://doi.org/10.1016/j.ijpddr.2014.09.006 CrossRefPubMedCentralGoogle Scholar
  27. Nicolao MC, Elissondo MC, Denegri GM, Goya AB, Cumino AC (2014) In vitro and in vivo effects of tamoxifen against larval stage Echinococcus granulosus. Antimicrob Agents Chemother 58:5146–5154.  https://doi.org/10.1128/aac.02113-13 CrossRefPubMedCentralGoogle Scholar
  28. Olivier L, Stirewalt MA (1952) An efficient method for exposure of mice to cercariae of Schistosoma mansoni. J Parasitol 38:19–23CrossRefGoogle Scholar
  29. Panic G, Duthaler U, Speich B, Keiser J (2014) Repurposing drugs for the treatment and control of helminth infections. Int J Parasitol Drugs Drug Resist 4:185–200.  https://doi.org/10.1016/j.ijpddr.2014.07.002 CrossRefPubMedCentralGoogle Scholar
  30. Pellegrino J, Siqueira AF (1956) Técnica de perfusão para colheita de Schistosoma mansoni em cobaias experimentalmente infectadas. Rev Bras Malariol Doencas Trop 8:589–597Google Scholar
  31. Pellegrino J, Oliveira CA, Faria J, Cunha AS (1962) New approach to the screening of drugs in experimental schistosomiasis mansoni in mice. Am J Trop Med Hyg 11:201–215CrossRefGoogle Scholar
  32. Pinto-Almeida A, Mendes T, de Oliveira RN, Corrêa SAP, Allegretti SM, Belo S, Tomás A, Anibal FF, Carrilho E, Afonso A (2016) Morphological characteristics of Schistosoma mansoni PZQ-resistant and -susceptible strains are different in presence of praziquantel. Front Microbiol 7:594.  https://doi.org/10.3389/fmicb.2016.00594 CrossRefPubMedCentralGoogle Scholar
  33. Radmacher MD, Simon R (2000) Estimation of tamoxifen’s efficacy for preventing the formation and growth of breast tumors. J Natl Cancer Inst 92:48–53CrossRefGoogle Scholar
  34. Rotheneichner P, Romanelli P, Bieler L, Pagitsch S, Zaunmair P, Kreutzer C, König R, Marschallinger J, Aigner L, Couillard-Després S (2017) Tamoxifen activation of Cre-recombinase has no persisting effects on adult neurogenesis or learning and anxiety. Front Neurosci 11:27.  https://doi.org/10.3389/fnins.2017.00027 CrossRefPubMedCentralGoogle Scholar
  35. Terrazas LI, Bojalil R, Govezensky T, Larralde C (1994) A role for 17-beta-estradiol in immunoendocrine regulation of murine cysticercosis (Taenia crassiceps). J Parasitol 80:563–568CrossRefGoogle Scholar
  36. Vargas-Villavicencio JA, Larralde C, De Leon-Nava MA, Escobedo G, Morales-Montor J (2007) Tamoxifen treatment induces protection in murine cysticercosis. J Parasitol 93:1512–1517.  https://doi.org/10.1645/ge-1191.1 CrossRefGoogle Scholar
  37. World Health Organization (WHO) (2016) Weekly epidemiological record 5(91):53–60Google Scholar
  38. Zhang JJ, Jacob TJ, Valverde MA, Hardy SP, Mintenig GM, Sepúlveda FV, Gill DR, Hyde SC, Trezise AE, Higgins CF (1994) Tamoxifen blocks chloride channels. A possible mechanism for cataract formation. J Clin Invest 94:1690–1697.  https://doi.org/10.1172/jci117514 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Biology Institute, Department of Animal Biology – ParasitologyUniversity of Campinas – UNICAMPCampinasBrazil
  2. 2.Biological and Health Sciences Section, Department of General BiologyPonta Grossa State UniversityPonta GrossaBrazil

Personalised recommendations