Advertisement

Further confirmation of second- and third-generation Eimeria necatrix merozoite DEGs using suppression subtractive hybridization

  • Shijie Su
  • Zhaofeng Hou
  • Lele Wang
  • Dandan Liu
  • Junjie Hu
  • Jinjun Xu
  • Jianping TaoEmail author
Genetics, Evolution, and Phylogeny - Original Paper

Abstract

In our previous study, we obtained a large number of differentially expressed genes (DEGs) between second-generation merozoites (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix using RNA sequencing (RNA-seq). Here, we report two subtractive cDNA libraries for MZ2 (forward library) and MZ3 (reverse library) that were constructed using suppression subtractive hybridization (SSH). PCR amplification revealed that the MZ2 and MZ3 libraries contained approximately 96.7% and 95% recombinant clones, respectively, and the length of the inserted fragments ranged from 0.5 to 1.5 kb. A total of 106 and 111 unique sequences were obtained from the MZ2 and MZ3 libraries, respectively, and were assembled into 13 specific consensus sequences (contigs or genes) (5 from MZ2 and 8 from MZ3). The qRT-PCR results revealed that 11 out of 13 genes were differentially expressed between MZ-2 and MZ-3. Of 13 genes, 11 genes were found in both SSH and our RNA-seq data and displayed a similar expression trend between SSH and RNA-seq data, and the remaining 2 genes have not been reported in both E. necatrix genome and our RNA-seq data. Among the 11 genes, the expression trends of 8 genes were highly consistent between SSH and our RNA-seq data. These DEGs may provide specialized functions related to the life-cycle transitions of Eimeria species.

Keywords

Eimeria Merozoite Suppression subtractive hybridization Differentially expressed genes 

Notes

Acknowledgments

We would like to thank all organizations which funded this work and all the teachers who cooperated in technical assistance.

Authors’ contributions

Conceived and designed the experiments: JP, SJ. Performed the experiments: SJ, ZF, LL, DD. Analyzed the data: SJ, JJ, HJ, JP. Wrote the paper: SJ and JP. All authors read and approved the final manuscript.

Funding information

This work was supported by “the National Key R&D Program of China” (2017YFD0500400), the National Natural Science Foundation of China (grant number 31472181 to JPT, grant number 31602039 to DDL), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

The study was approved by the Animal Care and Use Committee of the College of Veterinary Medicine, Yangzhou University (Approval ID: SYXK [Su] 2012-0029)

Disclaimer

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable

Supplementary material

436_2019_6242_MOESM1_ESM.xlsx (15 kb)
ESM 1 (XLSX 15 kb)

References

  1. Adam NM, Sorooshian S, Zhang XT, Tezara C, Azizi P, Sahebi M, Bande YM, Nurhaiza S, Kaiser A (2012) Engineering research methods. Lulu. com, pp. 15–24Google Scholar
  2. Allen PC, Jenkins MC, Miska KB (2005) Cross protection studies with Eimeria maxima strains. Parasitol Res 97(3):179–185 https://link.springer.com/article/10.1007%2Fs00436-005-1423-6 Google Scholar
  3. Bartels DJ, Mitchell DA, Dong X, Deschenes RJ (1999) Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol Cell Biol 19:6775–6787 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC84674/ Google Scholar
  4. Blake DP, Billington KJ, Copestake SL, Oakes RD, Quail MA, Wan KL, Shirley NW, Smith AL (2011) Genetic mapping identifies novel highly protective antigens for an Apicomplexan parasite. PLoS Pathog 7(2):e1001279 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037358/ Google Scholar
  5. Cui X, Lei T, Yang D, Hao P, Li B, Liu Q (2012a) Toxoplasma gondii immune mapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis. Vaccine 30(13):2282 https://linkinghub.elsevier.com/retrieve/pii/S0264-410X(12)00111–9Google Scholar
  6. Cui X, Lei T, Yang DY, Hao P, Liu Q (2012b) Identification and characterization of a novel Neospora caninum immune mapped protein 1. Parasitol 139:998–1004 https://www.researchgate.net/publication/221691321_Identification_and_characterization_of_a_novel_Neospora_caninum_immune_mapped_protein_1 Google Scholar
  7. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93(12):6025. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/8650213/–6030Google Scholar
  8. Diatchenko L, Lukyanov S, Lau YF, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Method Enzymol 303(3):349–380 https://linkinghub.elsevier.com/retrieve/pii/S0076-6879(99)03022–0Google Scholar
  9. Edmonds MJ, Morgan A (2014) A systematic analysis of protein palmitoylation in Caenorhabditis elegans. BMC Genomics 15:841 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25277130/ Google Scholar
  10. Ermolinsky B, Otalora LFP, Arshadmansab MF, Zarei MM, Garrido-Sanabria ER (2008) Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: a comparative real-time PCR analysis. Brain Res 1226(none):173–180 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18585369/ Google Scholar
  11. Frénal K, Tay CL, Mueller C, Bushell ES, Jia Y, Graindorge A, Billker O, Rayner JC, Soldati-Favr D (2013) Global analysis of apicomplexan protein S-acyl transferases reveals an enzyme essential for invasion. Traffic 14:895–911 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813974/ Google Scholar
  12. Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ, Pinney DF, Roos DS, Stoeckert CJ Jr, Wang H, Brunk BP (2008) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36:D553–D556 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238934/ Google Scholar
  13. Gleason EJ, Lindsey WC, Kroft TL, Singson AW, L’hernault SW (2006) Spe-10 encodes a DHHC-CRD zinc-finger membrane protein required for endoplasmic reticulum/Golgi membrane morphogenesis during Caenorhabditis elegans spermatogenesis. Genetics 172(1):145–158 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456142/ Google Scholar
  14. He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleo proteins A/B. Cell Mol Life Sci 66(7):1239–1256 https://link.springer.com/article/10.1007%2Fs00018-008-8532-1 Google Scholar
  15. Jenkins MC, Fetterer R, Miska K, Tuo W, Kwok O, Dubey JP (2015) Characterization of the Eimeria maxima sporozoite surface protein IMP1. Vet Parasitol 211(3–4):146–152 https://www.sciencedirect.com/science/article/pii/S0304401715002459?via%3Dihub Google Scholar
  16. Jia Y, Benjamin S, Liu Q, Xu Y, Dogga SK, Liu J, Matthews S, Soldati-Favre D (2017) Toxoplasma gondii immune mapped protein 1 is anchored to the inner leaflet of the plasma membrane and adopts a novel protein fold. Biochim Biophys Acta 1865(2):208–219 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716462/ Google Scholar
  17. Lee S, Seo CH, Alver BH, Lee S, Park PJ (2015) EMSAR: estimation of transcript bundance from RNA-seq data by mappability-based segmentation and reclustering. BMC Bioinf 16:278 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/26335049 Google Scholar
  18. Li X, Brock GN, Rouchka EC, Cooper N, Wu D, O'Toole TE, Gill RS, Eteleeb AM, O'Brien L, Rai SN (2017) A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of rna-seq data. PLoS One 12(5):e0176185 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411036/ Google Scholar
  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408 https://linkinghub.elsevier.com/retrieve/pii/S1046-2023(01)91262-9 Google Scholar
  20. Lukyanov SA, Rebrikov D, Buzdin AA (2007) Suppression Subtractive Hybridization. In: Suppression subtractive hybridization. Nucleic acids hybridization modern applications. Springer, Netherlands, pp 107–134. https://link.springer.com/chapter/10.1007/978-1-4020-6040-3_3 Google Scholar
  21. Martin AG, Danforth HD, Brita JR, Fernando MA (1997) Analysis of immunological cross protection and sensitivities to anticoccidial drugs among five geographical and temporal strains of Eimeria maxima. Int J Parasitol 27(5):527–533 https://www.sciencedirect.com/science/article/pii/S0020751997000271?via%3Dihub Google Scholar
  22. Mitchell DA, Vasudevan A, Linder ME, Duchenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127 http://www.jlr.org/content/47/6/1118.long Google Scholar
  23. Ohno Y, Kashio A, Ogata R, Ishitomi A, Yamazaki Y, Kihara A (2012) Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Mol Biol Cell 23:4543–4551 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510016/ Google Scholar
  24. Pfaffl MW (2006) Relative quantification. In: Dorak T (ed) Real time PCR BIOS advanced methods. Taylor & Francis, pp 63–82Google Scholar
  25. Putilina T, Wong P, Gentleman S (1999) The DHHC domain: a new highly conserved cysteine-rich motif. Mol Cell Biochem 195:219–226 https://link.springer.com/article/10.1023/A%3A1006932522197 Google Scholar
  26. Rangel LT, Novaes J, Durham AM, Madeira AM, Gruber A (2013) The Eimeria transcript DB: an integrated resource for annotated transcripts of protozoan parasites of the genus Eimeria. Database (Oxford) 2013:bat006 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572530/ Google Scholar
  27. Rebrikov DV, Desai SM, Siebert PD, Lukyanov SA (2004) Suppression subtractive hybridization. Methods Mol Biol 258(258):107–134Google Scholar
  28. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, Dunn M, Hung SS, Kawahara F, Miranda-Saavedra D, Malas TB, Mourier T, Naghra H, Nair M, Otto TD, Rawlings ND, Rivailler P, Sanchez-Flores A, Sanders M, Subramaniam C, Tay YL, Woo Y, Wu X, Barrell B, Dear PH, Doerig C, Gruber A, Ivens AC, Parkinson J, Rajandream MA, Shirley MW, Wan KL, Berriman M, Tomley FM, Pain A (2014) Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res 24(10):1676–1685 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199364/ Google Scholar
  29. Sahebi M, Hanafi MM, Abdullah SN, Rafii MY, Azizi P, Nejat N, Idris AS (2014) Isolation and expression analysis of novel silicon absorption gene from roots of mangrove (Rhizophora apiculata) via suppression subtractive hybridization. Biomed Res Int 2014(1):971985 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910099/ Google Scholar
  30. Sharman PA, Smith NC, Wallach MG, Katrib M (2010) Chasing the golden egg: vaccination against poultry coccidiosis. Parasite Immunol 32(8):590–598.  https://doi.org/10.1111/j.1365-3024.2010.01209.x Google Scholar
  31. Shirley MW (1995) Eimeria species and strains of chickens. In: Eckert J, Braun R, Shirley MW, Coudert P (eds) Biotechnology: guidelines on techniques in coccidiosis research. European Commission, Luxembourg, pp 1–24 https://www.researchgate.net/publication/309106635_Eimeria_species_and_strains_of_chickens Google Scholar
  32. Smith TG, Walliker D, Ranford-Cartwright LC (2002) Sexual differentiation and sex determination in the Apicomplexa. Trends Parasitol 18(7):315–323 https://linkinghub.elsevier.com/retrieve/pii/S1471492202022924 Google Scholar
  33. Su S, Hou Z, Liu D, Jia C, Wang L, Xu J, Tao J (2017) Comparative transcriptome analysis of second- and third-generation merozoites of Eimeria necatrix. Parasit Vectors 10(1):388 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559809/ Google Scholar
  34. Su S , Hou Z, Liu D, Jia C, Wang L, Xu J, Tao J (2018) Comparative transcriptome analysis of Eimeria necatrix third-generation merozoites and gametocytes reveals genes involved in sexual differentiation and gametocyte development. Vet Parasitol 252:35-46Google Scholar
  35. Tewari AK, Maharana BR (2011) Control of poultry coccidiosis: changing trends. J Parasit Dis 35(1):10–17 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114971/ Google Scholar
  36. Walker RA, Sharman PA, Miller CM, Lippuner C, Okoniewski M, Eichenberger RM, Ramakrishnan C, Brossier F, Deplazes P, Hehl AB, Smith NC (2015) RNA Seq analysis of the Eimeria tenella gametocyte transcriptome reveals clues about the molecular basis for sexual reproduction and oocyst biogenesis. BMC Genomics 16:94 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345034/ Google Scholar
  37. Wang F, Chen X, Shi W, Yao L, Gao M, Yang Y, Hao A (2015) Zdhhc15b regulates differentiation of diencephalic dopaminergic neurons in zebrafish. J Cell Biochem 116(12):2980–2991.  https://doi.org/10.1002/jcb.25256 Google Scholar
  38. Yang Z, Peng Z, Yang H, Yang J, Wei S, Cai P (2011) Suppression subtractive hybridization identified differentially expressed genes in pistil mutations in wheat. Plant Mol Biol Report 29(2):431–439 https://link.springer.com/article/10.1007%2Fs11105-010-0249-2 Google Scholar
  39. Yeh YM, Chen CY, Huang PR, Hsu CW, Wu CC, Wang TC (2014) Proteomic analyses of genes regulated by heterogeneous nuclear ribonucleoproteins a/b in jurkat cells. Proteomics 14(11):1357–1366 https://onlinelibrary.wiley.com/doi/abs/10.1002/pmic.201300549 Google Scholar
  40. Zhu L, Lv R, Kong L, Li X (2018) Reduced methylation downregulates CD39/ENTPD1 and ZDHHC14 to suppress trophoblast cell proliferation and invasion: implications in preeclampsia. Pregnancy Hypertens 3.  https://doi.org/10.1016/j.preghy.2018.03.012

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shijie Su
    • 1
    • 2
    • 3
    • 4
  • Zhaofeng Hou
    • 1
    • 2
    • 3
    • 4
  • Lele Wang
    • 1
    • 2
    • 3
    • 4
  • Dandan Liu
    • 1
    • 2
    • 3
    • 4
  • Junjie Hu
    • 5
  • Jinjun Xu
    • 1
    • 2
    • 3
    • 4
  • Jianping Tao
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.College of Veterinary MedicineYangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouPeople’s Republic of China
  3. 3.Jiangsu Key Laboratory of ZoonosisYangzhou UniversityYangzhouPeople’s Republic of China
  4. 4.Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouPeople’s Republic of China
  5. 5.Biology DepartmentYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations