The ABL kinase inhibitor imatinib causes phenotypic changes and lethality in adult Schistosoma japonicum

  • Xuesong Li
  • Simone Haeberlein
  • Lu Zhao
  • Mudassar N. Mughal
  • Tao Zhu
  • Lu Liu
  • Rui Fang
  • Yanqin Zhou
  • Junlong Zhao
  • Christoph G. Grevelding
  • Min HuEmail author
Helminthology - Original Paper


Schistosomiasis caused by different species of schistosome parasites is one of the most debilitating helminthic diseases of humans worldwide. For decades, chemotherapy is the main method of controlling schistosomiasis. However, the fear of drug resistance has motivated the search for alternatives. It has been demonstrated that the ABL kinase inhibitor imatinib affected the development and survival of Schistosoma mansoni in vitro; however, there is still lack of information on whether imatinib also affects other schistosome species such as Schistosoma japonicum. In the present study, the anti-schistosomal potency of imatinib on adult S. japonicum was investigated in vitro, and the results showed that imatinib had a significant impact on various physiological processes of S. japonicum adult worms. Besides its negative effects on worm motility, pairing stability, and gonad development, imatinib caused pathological changes in the gastrodermis as well as the death of the parasite. Our findings suggest that imatinib is an intriguing candidate for further development as an option to fight S. japonicum.


Imatinib ABL kinases Schistosoma japonicum Development In vitro culture 




S. japonicum

Schistosoma japonicum

S. mansoni

Schistosoma mansoni


Protein tyrosine kinases




Chronic myelogenous leukemia


Proto-oncogene receptor tyrosine kinase


Platelet-derived growth factor receptors


Imatinib mesylate


Confocal laser scanning microscopy


Authors’ contributions

Conceived and designed the experiments: SH, CGG, and MH. Performed the experiments: XS, LZ, MM, TZ, and LL. Analyzed the data: XS, SH, LZ, CGG, and MH. Contributed reagents/materials/analysis tools: RF, YQZ, and JLZ. Wrote the paper: XS, SH, LZ, CGG, and MH. All authors read and approved the final manuscript.


This work was supported by grants from the National Key Basic Research Program (973 program) of China (grant no. 2015CB150300) and the Fundamental Research Funds for the Central Universities (grant no. 2662017PY084) to MH and the Huazhong Agricultural University Scientific & Technological Self Innovation Foundation (Program no. 2015RC005) to MH, RF, YQZ, and JLZ.

Compliance with ethical standards

Ethical approval and consent to participate

The conduct and procedures involving animal experimentation in this study were approved by the Scientific Ethics Committee of Huazhong Agricultural University (HZAUMO-2017-024) according to the regulations for the Administration of Affairs Concerning Experimental Animals of Hubei Province.

Conflict of interests

The authors declare that they have no competing interests.


  1. Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, Renslo AR (2009) Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis 3(7):e478. CrossRefGoogle Scholar
  2. Andrews P, Thomas H, Pohlke R, Seubert J (1983) Praziquantel. Med Res Rev 3(2):147–200CrossRefGoogle Scholar
  3. Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). In J Mol Med 40:271–280. CrossRefGoogle Scholar
  4. Beckmann S (2012) Protein kinases as potential targets for novel anti-schistosomal strategies. Curr Pharm Des 18(24):3579–3594Google Scholar
  5. Beckmann S, Grevelding CG (2010) Imatinib has a fatal impact on morphology, pairing stability and survival of adult Schistosoma mansoni in vitro. Int J Parasitol 40(5):521–526. CrossRefGoogle Scholar
  6. Beckmann S, Quack T, Burmeister C, Buro C, Long T, Dissous C, Grevelding CG (2010) Schistosoma mansoni: signal transduction processes during the development of the reproductive organs. Parasitol 137(03):497Google Scholar
  7. Beckmann S, Hahnel S, Cailliau K, Vanderstraete M, Browaeys E, Dissous C, Grevelding CG (2011) Characterization of the Src/Abl hybrid kinase SmTK6 of Schistosoma mansoni. J Biol Chem 286(49):42325–42336. CrossRefGoogle Scholar
  8. Beckmann S, Long T, Scheld C, Geyer R, Caffrey C, Grevelding CG (2014) Serum albumin and α-1 acid glycoprotein impede the killing of Schistosoma mansoni by the tyrosine kinase inhibitor imatinib. Int J Parasitol Drugs Drug Resist 4(3):287–295. CrossRefGoogle Scholar
  9. Bergquist R, Utzinger J, Keiser J (2017) Controlling schistosomiasis with praziquantel: how much longer without a viable alternative? Infect Dis Poverty 6(1):74–83. CrossRefGoogle Scholar
  10. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyama ST (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460(7253):352–358. CrossRefGoogle Scholar
  11. Buchdunger E, O’Reilly T, Wood J (2002) Pharmacology of imatinib (STI571). Eur J Cancer Suppl 5:S28–S36CrossRefGoogle Scholar
  12. Buro C, Beckmann S, Oliveira KC, Dissous C, Cailliau K, Grevelding CG (2014) Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects. PLoS Negl Trop Dis 8(6):e2923. CrossRefGoogle Scholar
  13. Cheever AW, Powers KG (1969) Schistosoma mansoni infection in rhesus monkeys: changes in egg production and egg distribution in prolonged infections in intact and splenectomized monkeys. Ann Trop Med Parasitol 63(1):83–93CrossRefGoogle Scholar
  14. Cheever AW, Macedonia JG, Mosimann JE, Cheever EA (1994) Kinetics of egg production and egg excretion by Schistosoma mansoni and S. japonicum in mice infected with a single pair of worms. Am J Trop Med Hyg 50(3):281–295CrossRefGoogle Scholar
  15. Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96(10):3343–3356Google Scholar
  16. Dissous C, Ahier A, Khayath N (2007) Protein tyrosine kinases as new potential targets against human schistosomiasis. BioEssays 29(12):1281–1288. CrossRefGoogle Scholar
  17. Doenhoff MJ, Pica-Mattoccia L (2006) Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Rev Anti-Infect Ther 4(2):199–210. CrossRefGoogle Scholar
  18. El-Agamy DS, Shebl AM, Said SA (2011) Prevention and treatment of Schistosoma mansoni-induced liver fibrosis in mice. Inflammopharmacology 19(6):307–316. CrossRefGoogle Scholar
  19. Goswami D, Gurule S, Lahiry A, Anand A, Khuroo A, Monif T (2016) Clinical development of imatinib: an anticancer drug. Future Sci OA 2(1):Fso92. CrossRefGoogle Scholar
  20. Grover JK, Vats V, Uppal G, Yadav S (2001) Anthelmintics: a review. Trop Gastroenterol 22(4):180–189Google Scholar
  21. Han ZG, Brindley PJ, Wang SY, Chen Z (2009) Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 10:211–240. CrossRefGoogle Scholar
  22. Harder A (2002) Chemotherapeutic approaches to schistosomes: current knowledge and outlook. Parasitol Res 88(5):395–397CrossRefGoogle Scholar
  23. Hemer S, Brehm K (2012) In vitro efficacy of the anticancer drug imatinib on Echinococcus multilocularis larvae. Int J Antimicrob Agents 40(5):458–462. CrossRefGoogle Scholar
  24. Hess J, Keiser J, Gasser G (2015) Toward organometallic antischistosomal drug candidates. Future Med Chem 7(6):821–830. CrossRefGoogle Scholar
  25. Hubbard SR, Miller WT (2007) Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 19:117–123. CrossRefGoogle Scholar
  26. Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398. CrossRefGoogle Scholar
  27. Ishizawar R, Parsons SJ (2004) c-Src and cooperating partners in human cancer. Cancer Cell 6(3):209–214. CrossRefGoogle Scholar
  28. Knobloch J, Beckmann S, Burmeister C, Quack T, Grevelding CG (2007) Tyrosine kinase and cooperative TGFbeta signaling in the reproductive organs of Schistosoma mansoni. Exp Parasitol 117(3):318–336. CrossRefGoogle Scholar
  29. Kovac J, Vargas M, Keiser J (2017) In vitro and in vivo activity of R- and S- praziquantel enantiomers and the main human metabolite trans-4-hydroxy-praziquantel against Schistosoma haematobium. Parasit Vectors 10(1):365–366. CrossRefGoogle Scholar
  30. Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111(8):4022–4028. CrossRefGoogle Scholar
  31. Lewis FA, Tucker MS (2014) Schistosomiasis. Adv Exp Med Biol 766:47–75. CrossRefGoogle Scholar
  32. Manley PW, Cowan-Jacob SW, Buchdunger E, Fabbro D, Fendrich G (2002) Imatinib: a selective tyrosine kinase inhibitor. Eur J Cancer 38(Suppl 5):S19–S27CrossRefGoogle Scholar
  33. Neves RH, de Lamare Biolchini C, Machado-Silva JR, Carvalho JJ (2005) A new description of the reproductive system of Schistosoma mansoni (Trematoda: Schistosomatidae) analyzed by confocal laser scanning microscopy. Parasitol Res 95(1):43–49. CrossRefGoogle Scholar
  34. O’Connell EM, Bennuru S, Steel C, Dolan MA, Nutman TB (2015) Targeting filarial Abl-like hinases: orally available, food and drug administration-approved tyrosine kinase inhibitors are microfilaricidal and macrofilaricidal. J Infect Dis 212(5):684–693. CrossRefGoogle Scholar
  35. O’Connell EM, Kamenyeva O, Lustigman S, Bell A, Nutman TB (2017) Defining the target and the effect of imatinib on the filarial c-Abl homologue. PLoS Negl Trop Dis 11(7):e0005690. CrossRefGoogle Scholar
  36. Pathak V, Colah R, Ghosh K (2015) Tyrosine kinase inhibitors: new class of antimalarials on the horizon? Blood Cells Mol Dis 55(2):119–126. CrossRefGoogle Scholar
  37. Pendergast AM (2002) The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85:51–100CrossRefGoogle Scholar
  38. Pica-Mattoccia L, Cioli D (2004) Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int J Parasitol 34(4):527–533. CrossRefGoogle Scholar
  39. Pica-Mattoccia L, Doenhoff MJ, Valle C, Basso A, Troiani AR (2009) Genetic analysis of decreased praziquantel sensitivity in a laboratory strain of Schistosoma mansoni. Acta Trop 111(1):82–85. CrossRefGoogle Scholar
  40. Rossari F, Minutolo F, Orciuolo E (2018) Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol 11(1):84–97. CrossRefGoogle Scholar
  41. Thetiot-Laurent SA, Boissier J, Robert A, Meunier B (2013) Schistosomiasis chemotherapy. Angew Chem Int Ed Eng 52(31):7936–7956. CrossRefGoogle Scholar
  42. Townson S, Ramirez B, Fakorede F, Mouries MA, Nwaka S (2007) Challenges in drug discovery for novel antifilarials. Expert Opin Drug Discovery 2(s1):S63–S73. CrossRefGoogle Scholar
  43. Wang J, Li Y, Zhou SL (1987) An observation of praziquantel effecting on the activity and survival of hepatic-portal-phase Schistosomulae of Schistosoma japonicum in vitro. Acta AcadMed Hebei 18:338–342 [in Chinese]Google Scholar
  44. Wang W, Dai JR, Li HJ, Shen XH, Liang YS (2010) Is there reduced susceptibility to praziquantel in Schistosoma japonicum? Evidence from China. Parasitology 137(13):1905–1912. CrossRefGoogle Scholar
  45. Webbe G, James C (1977) A comparison of the susceptibility to praziquantel of Schistosoma haematobium, S. japonicum, S. mansoni, S. intercalatum and S. mattheei in hamsters. Z Parasitenkd 52(2):169–177CrossRefGoogle Scholar
  46. Weeks JC, Roberts WM, Leasure C, Suzuki BM, Robinson KJ (2018) Sertraline, paroxetine, and chlorpromazine are rapidly acting anthelmintic drugs capable of clinical repurposing. Sci Rep 8(1):975–990. CrossRefGoogle Scholar
  47. WHO (2017) Schistosomiasis and soil-transmitted helminthiases: number of people treated in 2016. Wkly Epidemiol Rec 92(49):749–760Google Scholar
  48. Wu S, Fu L (2018) Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 17(1):25–37. CrossRefGoogle Scholar
  49. Xiao SH, Sun J, Xue J (2012) Confocal laser scanning microscopic observation on adult Schistosoma japonicum harbored in mice following treatment with single-dose mefloquine. Parasitol Res 110(6):2403–2411. CrossRefGoogle Scholar
  50. Xu LL, Jiang B, Duan JH, Zhuang SF, Liu YC, Zhu SQ (2014) Efficacy and safety of praziquantel, tribendimidine and mebendazole in patients with co-infection of Clonorchis sinensis and other helminths. PLoS Negl Trop Dis 8(8):e3046. CrossRefGoogle Scholar
  51. Ye Q, Dong HF, Grevelding CG, Hu M (2013) In vitro cultivation of Schistosoma japonicum-parasites and cells. Biotechnol Adv 31(8):1722–1737. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.Institute of Parasitology, BFSJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations