Advertisement

Parasitology Research

, Volume 118, Issue 5, pp 1343–1352 | Cite as

B-1 cell response in immunity against parasites

  • Ronni Rômulo Novaes e Brito
  • Mayte dos Santos Toledo
  • Gabriela Martins Labussiere
  • Talita Vieira Dupin
  • Natasha Ferraz de Campos Reis
  • Elizabeth Cristina Perez
  • Patricia XanderEmail author
Immunology and Host-Parasite Interactions - Review
  • 51 Downloads

Abstract

The peritoneal cavity has a microenvironment capable of promoting proliferation, differentiation, and activation of the resident cells and recruitment of blood cells through the capillary network involved in the peritoneum. Among the cells found in the peritoneal cavity, B-1 cells are a particular cell type that contains features that are not very well defined. These cells differ from conventional B lymphocytes (B-2) by phenotypic, functional, and molecular characteristics. B-1 cells can produce natural antibodies, migrate to the inflammatory focus, and have the ability to phagocytose pathogens. However, the role of B-1 cells in immunity against parasites is still not completely understood. Several experimental models have demonstrated that B-1 cells can affect the susceptibility or resistance to parasite infections depending on the model and species. Here, we review the literature to provide information on the peculiarities of B-1 lymphocytes as well as their interaction with parasites.

Keywords

B-1 cells Protozoan Helminths Immune response 

Notes

Author’s contributions

RRNB and PX conceived and designed the work; RRNB, MST, GML, TVD, and NCR researched the data for the article and wrote the manuscript; ECP revised the final manuscript; and PX reviewed and edited the manuscript before submission. All authors provided substantial contributions to the discussion of the content. All authors have read and approved the final manuscript.

Funding information

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (grant number 2016/17245-4 to P.X.) and the scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento Pessoal de Ensino Superior (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abrahão TB, Freymüller E, Mortara RA, Lopes JD, Mariano M (2003) Morphological characterization of mouse B-1 cells. Immunobiology 208:401–411.  https://doi.org/10.1078/0171-2985-00287 Google Scholar
  2. Al-Qaoud KM, Fleischer B, Hoerauf A (1998) The Xid defect imparts susceptibility to experimental murine filariosis—association with a lack of antibody and IL-10 production by B cells in response to phosphorylcholine. Int Immunol 10:17–25Google Scholar
  3. Almeida SR, Aroeira LS, Frymuller E, Dias MA, Bogsan CS, Lopes JD, Mariano M (2001) Mouse B-1 cell-derived mononuclear phagocyte, a novel cellular component of acute non-specific inflammatory exudate. Int Immunol 13:1193–1201Google Scholar
  4. Arcanjo AF, LaRocque-de-Freitas IF, Rocha JD, Zamith D, Costa-da-Silva AC, Nunes MP, Mesquita-Santos FP, Morrot A, Filardy AA, Mariano M, Bandeira-Melo C, DosReis GA, Decote-Ricardo D, Freire-de-Lima CG (2015) The PGE2/IL-10 Axis determines susceptibility of B-1 cell-derived phagocytes (B-1CDP) to Leishmania major infection. PLoS One 10:e0124888.  https://doi.org/10.1371/journal.pone.0124888 Google Scholar
  5. Arcanjo AF, Nico D, de Castro GMM, da Silva Fontes Y, Saltarelli P, Decote-Ricardo D, Nunes MP, Ferreira-Pereira A, Palatnik-de-Sousa CB, Freire-de-Lima CG, Morrot A (2017a) Dependency of B-1 cells in the maintenance of splenic Interleukin-10 producing cells and impairment of macrophage resistance in visceral Leishmaniasis. Front Microbiol 8:978.  https://doi.org/10.3389/fmicb.2017.00978 Google Scholar
  6. Arcanjo AF, Nunes MP, Silva-Junior EB, Leandro M, da Rocha JDB, Morrot A, Decote-Ricardo D, Freire-de-Lima CG (2017b) B-1 cells modulate the murine macrophage response to Leishmania major infection. World J Biol Chem 8:151–162.  https://doi.org/10.4331/wjbc.v8.i2.151 Google Scholar
  7. Avila J, Rojas LM, Galili U (1989) Immunogenic gal alpha 1----3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J Immunol 142:2828–2834Google Scholar
  8. Babai B, Louzir H, Cazenave PA, Dellagi K (1999) Depletion of peritoneal CD5+ B cells has no effect on the course of Leishmania major infection in susceptible and resistant mice. Clin Exp Immunol 117:123–129Google Scholar
  9. Bao S, Beagley KW, Murray AM, Caristo V, Matthaei KI, Young IG, Husband AJ (1998) Intestinal IgA plasma cells of the B1 lineage are IL-5 dependent. Immunology 94:181–188.  https://doi.org/10.1046/j.1365-2567.1998.00512.x Google Scholar
  10. Barbeiro DF, Barbeiro HV, Faintuch J, Ariga SK, Mariano M, Popi AF, de Souza HP, Velasco IT, Soriano FG (2011) B-1 cells temper endotoxemic inflammatory responses. Immunobiology 216:302–308.  https://doi.org/10.1016/j.imbio.2010.08.002 Google Scholar
  11. Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11:34–46.  https://doi.org/10.1038/nri2901 Google Scholar
  12. Baumgarth N (2017) A hard(y) look at B-1 cell development and function. J Immunol 199:3387–3394.  https://doi.org/10.4049/jimmunol.1700943 Google Scholar
  13. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192:271–280Google Scholar
  14. Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26:347–362.  https://doi.org/10.1007/s00281-004-0182-2 Google Scholar
  15. Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300.  https://doi.org/10.1146/annurev.immunol.20.100301.064833 Google Scholar
  16. Borrello MA, Phipps RP (1995) Fibroblasts support outgrowth of splenocytes simultaneously expressing B lymphocyte and macrophage characteristics. J Immunol 155:4155–4161Google Scholar
  17. Borrello MA, Phipps RP (1996) The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol Today 17(10):471–475Google Scholar
  18. Briles DE, Nahm M, Schroer K, Davie J, Baker P, Kearney J, Barletta R (1981) Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. J Exp Med 153:694–705Google Scholar
  19. Casali P, Burastero SE, Nakamura M, Inghirami G, Notkins AL (1987) Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+ B-cell subset. Science 236(4797):77–81Google Scholar
  20. Chen M, Aosai F, Mun HS, Norose K, Hata H, Yano A (2000) Anti-HSP70 autoantibody formation by B-1 cells in Toxoplasma gondii-infected mice. Infect Immun 68(9):4893–4899Google Scholar
  21. Chen M, Aosai F, Norose K, Mun HS, Yano A (2003a) The role of anti-HSP70 autoantibody-forming V(H)1-J(H)1 B-1 cells in Toxoplasma gondii-infected mice. Int Immunol 15(1):39–47Google Scholar
  22. Chen M, Mun HS, Piao LX, Aosai F, Norose K, Mohamed RM, Belal US, Fang H, Ahmed AK, Kang HK, Matsuzaki G, Kitamura D, Yano A (2003b) Induction of protective immunity by primed B-1 cells in Toxoplasma gondi -infected B cell-deficient mice. Microbiol Immunol 47:997–1003Google Scholar
  23. Choi YS, Baumgarth N (2008) Dual role for B-1a cells in immunity to influenza virus infection. J Exp Med 205:3053–3064.  https://doi.org/10.1084/jem.20080979 Google Scholar
  24. Choi YS, Dieter JA, Rothaeusler K, Luo Z, Baumgarth N (2012) B-1 cells in the bone marrow are a signifi cant source of natural IgM. Eur J Immunol 42:120–129Google Scholar
  25. Cole LE, Yang Y, Elkins KL, Fernandez ET, Qureshi N, Shlomchik MJ, Herzenberg LA, Vogel SN (2009) Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. Tularensis LVS challenge. Proc Natl Acad Sci U S A 106:4343–4348.  https://doi.org/10.1073/pnas.0813411106 Google Scholar
  26. Cox FE (2002) History of human parasitology. Clin Microbiol Rev 15:595–612Google Scholar
  27. Dorshkind K, Montecino-Rodriguez E (2007) Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nat Rev Immunol 7:213–219.  https://doi.org/10.1038/nri2019 Google Scholar
  28. Gambero M, Teixeira D, Butin L, Ishimura ME, Mariano M, Popi AF, Longo-Maugéri IM (2016) Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism. Immunobiology 221:1001–1011.  https://doi.org/10.1016/j.imbio.2016.03.003 Google Scholar
  29. Gao J, Ma X, Gu W, Fu M, An J, Xing Y, Gao T, Li W, Liu Y (2012) Novel functions of murine B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol 42:982–992.  https://doi.org/10.1002/eji.201141519 Google Scholar
  30. Gaubert S, Viana da Costa A, Maurage CA, Lima EC, Fontaine J, Lafitte S, Minoprio P, Capron A, Grzych JM (1999) X-linked immunodeficiency affects the outcome of Schistosoma mansoni infection in the murine model. Parasite Immunol 21:89–101Google Scholar
  31. Geraldo MM, Costa CR, Barbosa FM, Vivanco BC, Gonzaga WF, Novaes E, Brito RR, Popi AF, Lopes JD, Xander P (2016) In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells. Parasite Immunol 38(6):365–376.  https://doi.org/10.1111/pim.12324 Google Scholar
  32. Ghosn EE, Russo M, Almeida SR (2006) Nitric oxide-dependent killing of Cryptococcus neoformans by B-1-derived mononuclear phagocyte. J Leukoc Biol 80:36–44.  https://doi.org/10.1189/jlb.1005603 Google Scholar
  33. Ghosn EE, Sadate-Ngatchou P, Yang Y, Herzenberg LA (2011) Distinct progenitors for B-1 and B-2 cells are present in adult mouse spleen. Proc Natl Acad Sci U S A 108:2879–2884.  https://doi.org/10.1073/pnas.1019764108 Google Scholar
  34. Ghosn EE, Yang Y, Tung J, Herzenberg LA (2008) CD11b expression distinguishes sequential stages of peritoneal B-1 development. Proc Natl Acad Sci U S A 105:5195–5200.  https://doi.org/10.1073/pnas.0712350105 Google Scholar
  35. Gil-Cruz C, Bobat S, Marshall JL, Kingsley RA, Ross EA, Henderson IR, Leyton DL, Coughlan RE, Khan M, Jensen KT, Buckley CD, Dougan G, MacLennan IC, López-Macías C, Cunningham AF (2009) The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc Natl Acad Sci U S A 106:9803–9808.  https://doi.org/10.1073/pnas.0812431106 Google Scholar
  36. Gonzaga WFKM, Geraldo MM, Vivanco BC, Popi AF, Mariano M, Batista WL, Xander P (2017) Evaluation of experimental infection with L. ( L.) Amazonensis in X-linked Immunodeficient mice. J Parasitol 103:708–717.  https://doi.org/10.1645/16-145 Google Scholar
  37. Gonzaga WF, Xavier V, Vivanco BC, Lopes JD, Xander P (2015) B-1 cells contribute to susceptibility in experimental infection with Leishmania (Leishmania) chagasi. Parasitology 142:1506–1515.  https://doi.org/10.1017/S0031182015000943 Google Scholar
  38. Griffin DO, Rothstein TL (2012) Human "orchestrator" CD11b(+) B1 cells spontaneously secrete interleukin-10 and regulate T-cell activity. Mol Med 18:1003–1008.  https://doi.org/10.2119/molmed.2012.00203. Google Scholar
  39. Haas KM, Poe JC, Steeber DA, Tedder TF (2005) B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23:7–18.  https://doi.org/10.1016/j.immuni.2005.04.011 Google Scholar
  40. Hardy RR, Carmack CE, Shinton SA, Riblet RJ, Hayakawa K (1989) A single VH gene is utilized predominantly in anti-BrMRBC hybridomas derived from purified Ly-1 B cells Definition of the VH11 family. J Immunol 142:3643–3651Google Scholar
  41. Hardy RR, Hayakawa K (2001) B cell developmental pathways. Annu Rev Immunol 19:595–621.  https://doi.org/10.1146/annurev.immunol.19.1.595 Google Scholar
  42. Hayakawa K, Asano M, Shinton SA, Gui M, Wen LJ, Dashoff J, Hardy RR (2003) Positive selection of anti-thy-1 autoreactive B-1 cells and natural serum autoantibody production independent from bone marrow B cell development. J Exp Med 197:87–99Google Scholar
  43. Hayakawa K, Hardy RR, Parks DR, Herzenberg LA (1983) The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med 157:202–218Google Scholar
  44. Herbert DR, Nolan TJ, Schad GA, Abraham D (2002) The role of B cells in immunity against larval Strongyloides stercoralis in mice. Parasite Immunol 24:95–101Google Scholar
  45. Herzenberg LA (2000) B-1 cells: the lineage question revisited. Immunol Rev 175:9–22Google Scholar
  46. Herzenberg LA, Stall AM, Lalor PA, Sidman C, Moore WA, Parks DR (1986a) The Ly-1 B cell lineage. Immunol Rev 93:81–102Google Scholar
  47. Herzenberg LA, Stall AM, Lalor PA, Sidman C, Moore WA, Parks DR, Herzenberg LA (1986b) The LY-1B cell lineage. Immunol Rev 93:81–102.  https://doi.org/10.1111/j.1600-065X.1986.tb01503.x Google Scholar
  48. Hoerauf A, Solbach W, Lohoff M, Rollinghoff M (1994) The Xid defect determines an improved clinical course of murine leishmaniasis in susceptible mice. Int Immunol 6:1117–1124Google Scholar
  49. Jayasekera JP, Moseman EA, Carroll MC (2007) Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J Virol 81:3487–3494.  https://doi.org/10.1128/JVI.02128-06 Google Scholar
  50. Khan WN, Alt FW, Gerstein RM, Malynn BA, Larsson I, Rathbun G, Davidson L, Müller S, Kantor AB, Herzenberg LA (1995) Defective B cell development and function in Btk-deficient mice. Immunity 3:283–299Google Scholar
  51. Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA (1989) Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1:75–84Google Scholar
  52. Langanke Dos Santos D, Alvares-Saraiva AM, Xavier JG, Spadacci-Morena DD, Peres GB, Dell'Armelina Rocha PR, Perez EC, Lallo MA (2018) B-1 cells upregulate CD8 T lymphocytes and increase proinflammatory cytokines serum levels in oral encephalitozoonosis. Microbes Infect 20:196–204.  https://doi.org/10.1016/j.micinf.2017.11.004 Google Scholar
  53. Lopes MF, Zamboni DS, Lujan HD, Rodrigues MM (2012) Immunity to protozoan parasites. J Parasitol Res 2012:250793.  https://doi.org/10.1155/2012/250793 Google Scholar
  54. Margry B, Wieland WH, van Kooten PJ, van Eden W, Broere F (2013) Peritoneal cavity B-1a cells promote peripheral CD4+ T-cell activation. Eur J Immunol 43(9):2317–2326.  https://doi.org/10.1002/eji.201343418 Google Scholar
  55. Martin F, Oliver AM, Kearney JF (2001) Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14:617–629Google Scholar
  56. Martin RK, Damle SR, Valentine YA, Zellner MP, James BN, Lownik JC, Luker AJ, Davis EH, DeMeules MM, Khandjian LM, Finkelman FD, Urban JF, Conrad DH (2018) B1 cell IgE impedes mast cell-mediated enhancement of parasite expulsion through B2 IgE blockade. Cell Rep 22:1824–1834.  https://doi.org/10.1016/j.celrep.2018.01.048 Google Scholar
  57. Martínez-Riaño A, Bovolenta ER, Mendoza P, Oeste CL, Martín-Bermejo MJ, Bovolenta P, Turner M, Martínez-Martín N, Alarcón B (2018) Antigen phagocytosis by B cells is required for a potent humoral response. EMBO Rep 19(9):e46016.  https://doi.org/10.15252/embr.201846016 Google Scholar
  58. Masmoudi H, Mota-Santos T, Huetz F, Coutinho A, Cazenave PA (1990) All T15 id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Int Immunol 2:515–520Google Scholar
  59. Merino MC, Montes CL, Acosta-Rodriguez EV, Bermejo DA, Amezcua-Vesely MC, Gruppi A (2010) Peritoneum from Trypanosoma cruzi-infected mice is a homing site of Syndecan-1 neg plasma cells which mainly provide non-parasite-specific antibodies. Int Immunol 22:399–410.  https://doi.org/10.1093/intimm/dxq019 Google Scholar
  60. Minoprio P, el Cheikh MC, Murphy E, Hontebeyrie-Joskowicz M, Coffman R, Coutinho A, O'Garra A (1993) Xid-associated resistance to experimental Chagas' disease is IFN-gamma dependent. J Immunol 151:4200–4208Google Scholar
  61. Montecino-Rodrigue E, Fice M, Casero D, Berent-Maoz B, Barber CL, Dorshkind K (2016) Distinct genetic networks orchestrate the emergence of specific waves of fetal and adult B-1 and B-2 development. Immunity 45(3):527–539.  https://doi.org/10.1016/j.immuni.2016.07.012 Google Scholar
  62. Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218.  https://doi.org/10.1111/j.1600-065X.2008.00706.x Google Scholar
  63. Mussalem JS, Squaiella-Baptistão CC, Teixeira D, Yendo TM, Thies FG, Popi AF, Mariano M, Longo-Maugéri I (2012) Adjuvant effect of killed Propionibacterium acnes on mouse peritoneal B-1 lymphocytes and their early phagocyte differentiation. PLoS One 7(3):e33955.  https://doi.org/10.1371/journal.pone.0033955 Google Scholar
  64. Novaes E, Brito RR, Cortez BA, Machado-Santelli GM, Xander P, De Lorenzo BH, Oliveira HC, Thies FG, Kioshima ES, Maricato JT, Lopes JD, Mariano M (2010, 2010) In Vitro and In Vivo Phagocytic Ability of Mouse B-1 Cells. Immunol Immunogen Insights:231–239.  https://doi.org/10.4137/III.S6156
  65. O'Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M (1992) Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol 22:711–717.  https://doi.org/10.1002/eji.1830220314 Google Scholar
  66. Ohdan H, Swenson KG, Kruger Gray HS, Yang YG, Xu Y, Thall AD, Sykes M (2000) Mac-1-negative B-1b phenotype of natural antibody-producing cells, including those responding to gal alpha 1,3Gal epitopes in alpha 1,3-galactosyltransferase-deficient mice. J Immunol 165:5518–5529Google Scholar
  67. Paciorkowski N, Porte P, Shultz LD, Rajan TV (2000) B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. J Exp Med 191:731–736Google Scholar
  68. Perona-Wright G, Mohrs K, Taylor J, Zaph C, Artis D, Pearce EJ, Mohrs M (2008) Cutting edge: helminth infection induces IgE in the absence of mu- or delta-chain expression. J Immunol 181(10):6697–6701Google Scholar
  69. Popi AF (2015) B-1 phagocytes: the myeloid face of B-1 cells. Ann N Y Acad Sci 1362:86–97.  https://doi.org/10.1111/nyas.12814 Google Scholar
  70. Popi AF, Longo-Maugéri IM, Mariano M (2016) An overview of B-1 cells as antigen-presenting cells. Front Immunol 7:138.  https://doi.org/10.3389/fimmu.2016.00138 Google Scholar
  71. Popi AF, Motta FL, Mortara RA, Schenkman S, Lopes JD, Mariano M (2009) Co-ordinated expression of lymphoid and myeloid specific transcription factors during B-1b cell differentiation into mononuclear phagocytes in vitro. Immunology 126:114–122.  https://doi.org/10.1111/j.1365-2567.2008.02883.x Google Scholar
  72. Popi AF, Osugui L, Perez KR, Longo-Maugeri IM, Mariano M (2012) Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation? PLoS One 7(3):e34570.  https://doi.org/10.1371/journal.pone.0034570 Google Scholar
  73. Quách TD, Rodríguez-Zhurbenko N, Hopkins TJ, Guo X, Hernández AM, Li W, Rothstein TL (2016) Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J Immunol 196(3):1060–1069.  https://doi.org/10.4049/jimmunol.1501843 Google Scholar
  74. Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M, Plevy S, Bengtén E, Kolls JK (2010) Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus pneumocystis murina. J Exp Med 207:2907–2919.  https://doi.org/10.1084/jem.20100034 Google Scholar
  75. Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, Mohr RN, Bazan JF, Howard M, Copeland NG, Jenkins NA, Witte ON (1993) Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261:358–361Google Scholar
  76. Rothstein TL, Griffin DO, Holodick NE, Quach TD, Kaku H (2013) Human B-1 cells take the stage. Ann N Y Acad Sci 1285:97–114.  https://doi.org/10.1111/nyas.12137 Google Scholar
  77. Sato T, Ishikawa S, Akadegawa K, Ito T, Yurino H, Kitabatake M, Yoneyama H, Matsushima K (2004) Aberrant B1 cell migration into the thymus results in activation of CD4 T cells through its potent antigen-presenting activity in the development of murine lupus. Eur J Immunol 34(12):3346–3358.  https://doi.org/10.1002/eji.200425373 Google Scholar
  78. Savage HP, Baumgarth N (2015) Characteristics of natural antibody-secreting cells. Ann N Y Acad Sci 1362:132–142.  https://doi.org/10.1111/nyas.12799 Google Scholar
  79. Snider DP, Skea D, Underdown BJ (1988) Chronic giardiasis in B-cell-deficient mice expressing the xid gene. Infect Immun 56(11):2838–2842Google Scholar
  80. Takatsu K, Takaki S, Hitoshi Y, Mita S, Katoh S, Yamaguchi N, Tominaga A (1992) Cytokine receptors on Ly-1 B cells. IL-5 and its receptor system. Ann N Y Acad Sci 651:241–258Google Scholar
  81. Travassos LR, Almeida IC (1993) Carbohydrate immunity in American trypanosomiasis. Springer Semin Immunopathol 15(2–3):183–204Google Scholar
  82. Tumang JR, Hastings WD, Bai C, Rothstein TL (2004) Peritoneal and splenic B-1 cells are separable by phenotypic, functional, and transcriptomic characteristics. Eur J Immunol 34(8):2158–2167.  https://doi.org/10.1002/eji.200424819 Google Scholar
  83. Velupillai P, Secor WE, Horauf AM, Harn DA (1997) B-1 cell (CD5+B220+) outgrowth in murine schistosomiasis is genetically restricted and is largely due to activation by polylactosamine sugars. J Immunol 158(1):338–344Google Scholar
  84. Vigna AF, Godoy LC, Almeida SR, Mariano M, Lopes JD (2002) Characterization of B-1b cells as antigen presenting cells in the immune response to gp43 from Paracoccidioides brasiliensis in vitro. Immunol Lett 83(1):61–66Google Scholar
  85. Vink A, Warnier G, Brombacher F, Renauld JC (1999) Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J Exp Med 189(9):1413–1423Google Scholar
  86. Wang Y, Rothstein TL (2012) Induction of Th17 cell differentiation by B-1 cells. Front Immunol 3:281.  https://doi.org/10.3389/fimmu.2012.00281 Google Scholar
  87. Wilson EH, Katz E, Goodridge HS, Harnett MM, Harnett W (2003) In vivo activation of murine peritoneal B1 cells by the filarial nematode phosphorylcholine-containing glycoprotein ES-62. Parasite Immunol 25(8–9):463–466Google Scholar
  88. Yang Y, Ghosn EE, Cole LE, Obukhanych TV, Sadate-Ngatchou P, Vogel SN, Herzenberg LA, Herzenberg LA (2012) Antigen-specific memory in B-1a and its relationship to natural immunity. Proc Natl Acad Sci U S A 109(14):5388–5393.  https://doi.org/10.1073/pnas.1121627109 Google Scholar
  89. Yang Y, Tung JW, Ghosn EE, Herzenberg LA (2007) Division and differentiation of natural antibody-producing cells in mouse spleen. Proc Natl Acad Sci U S A 104(11):4542–4546.  https://doi.org/10.1073/pnas.0700001104 Google Scholar
  90. Yenson V, Baumgarth N (2014) Purification and immune phenotyping of B-1 cells from body cavities of mice. Methods Mol Biol 1190:17–34.  https://doi.org/10.1007/978-1-4939-1161-5_2 Google Scholar
  91. Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, Regalado A, Cowan PJ, d'Apice AJ, Chong AS, Doumbo OK, Traore B, Crompton PD, Silveira H, Soares MP (2014) Gut microbiota elicits a protective immune response against malaria transmission. Cell 159(6):1277–1289.  https://doi.org/10.1016/j.cell.2014.10.053 Google Scholar
  92. Zhong X, Gao W, Degauque N, Bai C, Lu Y, Kenny J, Oukka M, Strom TB, Rothstein TL (2007) Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur J Immunol 37(9):2400–2404.  https://doi.org/10.1002/eji.200737296 Google Scholar
  93. Zhu Q, Zhang M, Shi M, Liu Y, Zhao Q, Wang W, Zhang G, Yang L, Zhi J, Zhang L, Hu G, Chen P, Yang Y, Dai W, Liu T, He Y, Feng G, Zhao G (2016) Human B cells have an active phagocytic capability and undergo immune activation upon phagocytosis of Mycobacterium tuberculosis. Immunobiology 221(4):558–567.  https://doi.org/10.1016/j.imbio.2015.12.003 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ronni Rômulo Novaes e Brito
    • 1
  • Mayte dos Santos Toledo
    • 2
  • Gabriela Martins Labussiere
    • 2
  • Talita Vieira Dupin
    • 2
  • Natasha Ferraz de Campos Reis
    • 2
  • Elizabeth Cristina Perez
    • 3
  • Patricia Xander
    • 2
    • 4
    Email author
  1. 1.Centro Universitário São CamiloSão PauloBrazil
  2. 2.Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo Campus DiademaDiademaBrazil
  3. 3.Pós Graduação em Patologia Ambiental e ExperimentalUniversidade PaulistaSão PauloBrazil
  4. 4.Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo campus DiademaSão PauloBrazil

Personalised recommendations