Advertisement

Taxonomic status of Rhabdochona ictaluri (Nematoda: Rhabdochonidae) based on molecular and morphological evidence

  • Omar Lagunas-Calvo
  • Ana Santacruz
  • David Iván Hernández-Mena
  • Gerardo Rivas
  • Gerardo Pérez-Ponce de León
  • Rogelio Aguilar-AguilarEmail author
Fish Parasitology - Original Paper

Abstract

The genus Rhabdochona includes more than 100 species infecting freshwater fishes in all zoogeographical regions of the world. In Mexico, 12 nominal species of Rhabdochona have been recorded. Of these, Rhabdochona ictaluri was originally described as a parasite of endemic catfishes of the family Ictaluridae; however, the species was later considered on morphological grounds as a junior synonym of Rhabdochona kidderi. In this study, newly sampled specimens of R. ictaluri were obtained from the type host and type locality and were used to perform a detailed morphological analysis and molecular phylogenetic inferences through one mitochondrial and two nuclear genes; data were used in an integrative taxonomy context to test the taxonomic status of R. ictaluri. This approach proved to be very useful to confirm the validity of this species, and robust species limits were established between these two putative species considering morphology, molecular data, host association, and biogeography.

Keywords

Nematoda Integrative taxonomy Species limits Morphology COX1 

Notes

Acknowledgments

We thank Jaime Guzmán, Ramón Valdez, and Saúl Montoya for their help during field work; Luis García for the loan of specimens of Rhabdochona ictaluri and R. kidderi deposited in the CNHE, and for providing helpful bibliographic references; Berenit Mendoza for the preparation of specimens for SEM, and Laura Márquez for support obtaining DNA sequences.

Funding information

This project was partially funded by the program PAPIIT-UNAM IN218414 to GR and IN202617 to GPPL. OLC, AOSV, and DIHM wish to thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for granting scholarships to complete their graduate programs.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguilar-Aguilar R, Rosas-Valdez R, Pérez-Ponce de León G (2010) Rhabdochona ictaluri sp. nov. (Nematoda, Rhabdochonidae) from ictalurid catfishes in Mexico. Acta Parasitol 55:276–280.  https://doi.org/10.2478/s11686-010-0035-1 CrossRefGoogle Scholar
  2. Agustí CF, Aznar J, Raga A (2005) Tetraphyllidean plerocercoids from western Mediterranean cetaceans and other marine mammals around the world: a comprehensive morphological analysis. J Parasitol 91:83–92.  https://doi.org/10.1645/GE-372R CrossRefPubMedGoogle Scholar
  3. Albrecht GH (1980) Multivariate analysis and the study of form, with special reference to canonical variate analysis. Am Zool 20:679–693.  https://doi.org/10.1093/icb/20.4.679 CrossRefGoogle Scholar
  4. Alcántar-Escalera FJ, García-Varela M, Vázquez-Domínguez E, Pérez-Ponce de León G (2013) Using DNA barcoding to link cystacanths and adults of the acanthocephalan Polymorphus brevis in central Mexico. Mol Ecol Res 13:1116–1124.  https://doi.org/10.1111/1755-0998.12090 CrossRefGoogle Scholar
  5. Archidona-Yuste A, Navas-Cortés JA, Cantalapiedra-Navarrete C, Palomares-Rius JE, Castillo P (2016) Cryptic diversity and species delimitation in the Xiphinema americanum-group complex (Nematoda: Longidoridae) as inferred from morphometrics and molecular markers. Zool J Linnean Soc 176(2):231–265.  https://doi.org/10.1111/zoj.12316 CrossRefGoogle Scholar
  6. Blouin M (1998) Mitochondrial DNA, diversity in nematodes. J Helminthol 72:285–289.  https://doi.org/10.1017/S0022149X00016618 CrossRefPubMedGoogle Scholar
  7. Blouin M (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 32:527–531.  https://doi.org/10.1016/S0020-7519(01)00357-5 CrossRefPubMedGoogle Scholar
  8. Casiraghi M, Anderson TJC, Bandi C, Bazzocchi C, Genchi C (2001) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122:93–103.  https://doi.org/10.1017/S0031182000007149 CrossRefPubMedGoogle Scholar
  9. Caspeta-Mandujano JM (2010) Nemátodos parásitos de peces de agua dulce de México. AGT Editor, MéxicoGoogle Scholar
  10. Chaudhary A, Kansal G, Singh N, Shobhna K, Verma M, Singh H (2017) Molecular identification of Thelandros scleratus and Thelastoma icemi (Nematoda: Oxyruida) using mitochondrial cox 1 sequences. Acta Parasitol 62:382–385.  https://doi.org/10.1515/ap-2017-0045 CrossRefPubMedGoogle Scholar
  11. Cheng QQ, Li D, Ma L (2005) Morphological differences between close populations discernible by multivariate analysis: a case study of genus Coilia (Teleostei: Clupeiformes). Aquat Living Resour 18:187–192.  https://doi.org/10.1051/alr:2005020 CrossRefGoogle Scholar
  12. Choudhury A, Nadler SA (2018) Phylogenetic relationships of spiruromorph nematodes (Spirurina: Spiruromorpha) in North American freshwater fishes. J Parasitol 104:496–504.  https://doi.org/10.1645/17-195 CrossRefPubMedGoogle Scholar
  13. Choudhury A, García-Varela M, Pérez-Ponce de León G (2017) Parasites of freshwater fishes and the Great American Biotic Interchange: a bridge too far? J Helminthol 91:174–196.  https://doi.org/10.1017/S0022149X16000407 CrossRefPubMedGoogle Scholar
  14. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristcs and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415.  https://doi.org/10.1111/j.1095-8312.2005.00503.x CrossRefGoogle Scholar
  16. De Borba RS, da Silva EL, Pacheco ACS, Parise-Maltempi PP, Alves AL (2012) Trends in the kariotypic evolution of the Neotropical catfish family Heptapteridae Bockmann 1998 (Teleostei: Siluriformes). Rev Fish Biol Fisher 22:509–518.  https://doi.org/10.1007/s11160-011-9245-3 CrossRefGoogle Scholar
  17. De Ley P, Felix MA, Frisse LM, Nadler SA, Sternberg PW, Thomas WK (1999) Molecular and morphological characterization of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1:591–612.  https://doi.org/10.1163/156854199508559 CrossRefGoogle Scholar
  18. De Ley P, De Ley IT, Morris K, Abebe E, Mundo-Ocampo M, Yoder M, Heras J, Waumann D, Rocha-Olivares A, Burr AHJ, Baldwin JG, Thomas WK (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Phil Trans R Soc B 360:1945–1958.  https://doi.org/10.1098/rstb.2005.1726 CrossRefPubMedGoogle Scholar
  19. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886.  https://doi.org/10.1080/10635150701701083 CrossRefPubMedGoogle Scholar
  20. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious, version 5.0.4. http://www.geneious.com. Accessed Jan 2018
  21. Eberhardt UA (2010) Constructive step towards selecting a DNA barcode for Fungi. New Phytol 187:265–268.  https://doi.org/10.1111/j.1469-8137.2010.03329.x CrossRefPubMedGoogle Scholar
  22. Egan AN (2015) Species delimitation and recognition in the Pediomelum megalanthum complex (Fabaceae) via multivariate morphometrics. PhytoKeys 44:65–87.  https://doi.org/10.3897/phytokeys.44.8750 CrossRefGoogle Scholar
  23. García-Varela M, Nadler SA (2005) Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. J Parasitol 91:1401–1409.  https://doi.org/10.1645/GE-523R.1 CrossRefPubMedGoogle Scholar
  24. Garrido-Olvera L, García-Prieto L, Pérez-Ponce de León G (2006) Checklist of the adult nematode parasites of fishes in freshwater localities from Mexico. Zootaxa 120:1–45.  https://doi.org/10.11646/zootaxa.1201.1.1 CrossRefGoogle Scholar
  25. Hawkins JA (2000) A survey of primary homology assessment: different botanists perceive and define characters in different ways. In: Scotland RW, Pennington RT (eds) Homology & systematics: coding characters for phylogenetic analysis. Taylor & Francis, London, pp 22–53Google Scholar
  26. Helfman GS, Collete BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology, 2nd edn. Wiley-Blackwell, OxfordGoogle Scholar
  27. Huang D, Meier R, Todd P, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174.  https://doi.org/10.1007/s00239-008-9069-5 CrossRefPubMedGoogle Scholar
  28. Janssen T, Karssen G, Topalovíc O, Coyne D, Bert W (2017) Integrative taxonomy of root-knot nematodes reveals multiple independent origins of mitotic parthenogenesis. PLoS One 12(3):e0172190.  https://doi.org/10.1371/journal.pone.0172190 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lamothe-Argumedo R (1997) Manual de técnicas para preparar y estudiar los parásitos de animales silvestres. AGT Editor, México D. FGoogle Scholar
  30. Martínez-Aquino A, Ceccarelli FS, Eguiarte LE, Pérez-Ponce de León G (2014) Do the historical biogeography and evolutionary history of the digenean Margotrema spp. across Central Mexico mirror those of their freshwater fish hosts (Goodeinae)? PLoS One 9:e101700.  https://doi.org/10.1371/journal.pone.0101700 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mayden RL (1992) Systematics, historical ecology, and North American freshwater fishes. Stanford University Press, StanfordGoogle Scholar
  32. Mazur M, Klajbor K, Kielich M, Sowińska M, Romo A, Montserrat JM, Boratyński A (2010) Intra-specific differentiation of Juniperus phoenicea in the western Mediterranean region revealed in morphological multivariate analysis. Dendrobiology 63:21–31Google Scholar
  33. McKay BD, Mays HL Jr, Wu Y, Li H, Yao C-t, Nishiumi I, Zou F (2013) An empirical comparison of character-based and coalescent-based approaches to species delimitation in a young avian complex. Mol Ecol 22:4943–4957.  https://doi.org/10.1111/mec.12446 CrossRefPubMedGoogle Scholar
  34. Meik JM, Schaack S, Flores-Villela O, Streicher JW (2018) Integrative taxonomy at the nexus of population divergence and speciation in insular speckled rattlesnakes. J Nat Hist 52:989–1016CrossRefGoogle Scholar
  35. Mejia-Madrid HH, Choudhury A, Perez-Ponce de Leon G (2007a) Phylogeny and biogeography of Rhabdochona Railliet, 1916 (Nematoda: Rhabdochonidae) species from the Americas. Syst Parasitol 67:1–18.  https://doi.org/10.1007/s11230-006-9065-3 CrossRefPubMedGoogle Scholar
  36. Mejia-Madrid HH, Vazquez-Dominguez E, Perez-Ponce de Leon G (2007b) Phylogeography and freshwater basins in Central Mexico: recent history as revealed by the fish parasite Rhabdochona lichtenfelsi (Nematoda). J Biogeogr 34:787–801.  https://doi.org/10.1111/j.1365-2699.2006.01651.x CrossRefGoogle Scholar
  37. Miller RR, Minckley WL, Norris SM (2005) Freshwater fishes of Mexico. The University of Chicago Press, ChicagoGoogle Scholar
  38. Moravec F, Adlard R (2016) Redescription of Rhabdochona papuanensis (Nematoda: Thelazioidea), a parasite of rainbow fishes (Melanotaenia spp.); the first record of the species of Rhabdochona in Australia. Acta Parasitol 61:820–827.  https://doi.org/10.1515/ap-2016-0114 CrossRefPubMedGoogle Scholar
  39. Moravec F, Huffman DG (1988) Observations on the genus Rhabdochona Railliet, 1916 (Nematoda: Rhabdochonidae) from fishes of central Texas, with descriptions of two new subspecies. Folia Parasitol 35:341–351Google Scholar
  40. Moravec F, Vivas-Rodríguez C, Scholz T, Vargas-Vázquez J, Mendoza-Franco E, González-Solís D (1995) Nematodes parasitic in fishes of cenotes (= sinkholes) of the Peninsula of Yucatan, Mexico. Part 1. Adults. Folia Parasitol 42:115–129PubMedGoogle Scholar
  41. Moravec F, Salgado-Maldonado G, Gónzalez-Sólis G, Caspeta-Mandujano JM (2012) Host-parasite relationships of Rhabdochona kidderi Pearse, 1936 (Nematoda: Rhabdochonidae) in fishes of the Lacantún River in the Lacandon rain forest of Chiapas State, southern Mexico, with a key to Mexican species of Rhabdochona Raillet, 1916. Syst Parasitol 82:1–12.  https://doi.org/10.1007/s11230-012-9342-2 CrossRefPubMedGoogle Scholar
  42. Moravec F, Pachanawan A, Kamchoo K (2013) Rhabdochona (Rhabdochona) hypsibarbi n. sp. (Nematoda: Rhabdochonidae) from the freshwater cyprinid fish Hypsibarbus wetmorei (Smith) in Northeast Thailand. J Parasitol 99:297–302.  https://doi.org/10.1645/12-32.1 CrossRefPubMedGoogle Scholar
  43. Nadler SA, Pérez-Ponce de León G (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709.  https://doi.org/10.1017/S003118201000168X CrossRefPubMedGoogle Scholar
  44. Nadler SA, Adams BJ, Lyons ET, DeLong RL, Melin SR (2000) Molecular and morphometric evidence for separate species of Uncinaria (Nematoda: Ancylostomatidae) in California sea lions and northern fur seals: hypothesis testing supplants verification. J Parasitol 86:1099–1106.  https://doi.org/10.1645/0022-3395 CrossRefPubMedGoogle Scholar
  45. Nakano T, Okamoto M, Ikeda Y, Hasegawa H (2006) Mitochondrial cytochrome c oxidase subunit 1 gene and nuclear rDNA regions of Enterobius vermicularis parasitic in captive chimpanzees with special reference to its relationship with pinworms in humans. Parasitol Res 100:51–57.  https://doi.org/10.1007/s00436-006-0238-4 CrossRefPubMedGoogle Scholar
  46. Padial JM, Miralles A, de la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16.  https://doi.org/10.1186/1742-9994-7-16 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pante E, Schoelinck C, Puillandre N (2015) From integrative taxonomy to species description: one step beyond. Syst Biol 64:152–160.  https://doi.org/10.1093/sysbio/syu083 CrossRefPubMedGoogle Scholar
  48. Pearse AS (1936) Parasites from Yucatan. Carnegie Inst Wash Publ 457:45–59Google Scholar
  49. Pereira T, Fonseca G, Mundo-Ocampo M, Guilherme B, Rocha-Olivares A (2010) Diversity of free-living marine nematodes (Enoplida) from Baja California assessed by integrative taxonomy. Mar Biol 157:1665–1678.  https://doi.org/10.1007/s00227-010-1439-z CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pérez-Ponce de León G, Choudhury A (2002) Adult endohelminth parasites of ictalurid fishes (Osteichthyes: Ictaluridae) in México: empirical evidence for biogeographical patterns. Comp Parasitol 69:10–19. https://doi.org/10.1654/1525-2647(2002)069[0010:AEPOIF]2.0.CO;2Google Scholar
  51. Pérez-Ponce de León G, Choudhury A (2005) Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. J Biogeogr 32:645–659.  https://doi.org/10.1111/j.1365-2699.2005.01218.x CrossRefGoogle Scholar
  52. Pérez-Ponce de León G, Choudhury A (2010) Parasite inventories and DNA-based taxonomy: lessons from helminths of freshwater fishes in a megadiverse country. J Parasitol 96:236–244.  https://doi.org/10.1645/GE-2239.1 CrossRefGoogle Scholar
  53. Pérez-Ponce de León G, García-Varela M, Pinacho-Pinacho CD, Sereno-Uribe AL, Poulin R (2016) Species delimitation in trematodes using DNA sequences: middle-American Clinostomum as a case study. Parasitology 143:1773–1789.  https://doi.org/10.1017/S0031182016001517 CrossRefPubMedGoogle Scholar
  54. Pérez-Rodríguez R, Domínguez-Domínguez O, Doadrio I, Cuevas-García E, Pérez-Ponce de León G (2015) Comparative historical biogeography of three groups of Nearctic freshwater fishes across central Mexico. J Fish Biol 86:993–1105.  https://doi.org/10.1111/jfb.12611 CrossRefPubMedGoogle Scholar
  55. Quiroz-Martínez B, Salgado-Maldonado G (2013) Patterns of distribution of the helminth parasites of freshwater fishes of Mexico. PLoS One 8:e54787.  https://doi.org/10.1371/journal.pone.0054787 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rambaut, A. (2012) FigTree v1.4. Available from http://tree.bio.ed.ac.uk/software/figtree/. Accessed Jan 2018
  57. Rego AA (2000) Cestode parasites of Neotropical teleost freshwater fishes. In: Salgado-Maldonado G, García-Aldrete AN, Vidal-Martínez VM (eds) Metazoan parasites in the neotropics: a systematic and ecological perspective. Instituto de Biología, Universidad Nacional Autónoma de México, México, D. F., pp 135–154Google Scholar
  58. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rosas-Valdez R, Pérez-Ponce de León G (2008) Composición taxonómica de los helmintos parásitos de ictalúridos y heptaptéridos (Osteichthyes: Siluriformes) de México, con una hipótesis de homología biogeográfica primaria. Rev Mex Biodiv 79:473–499Google Scholar
  60. Satler JD, Carstens BC, Hedin M (2013) Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Syst Biol 62:805–823.  https://doi.org/10.1093/sysbio/syt041 CrossRefPubMedGoogle Scholar
  61. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2009) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438.  https://doi.org/10.1146/annurev-ento-112408-085432 CrossRefGoogle Scholar
  62. Sereno-Uribe AL, Pinacho-Pinacho CD, García-Varela M, Pérez-Ponce de León G (2013) Using mitochondrial and ribosomal DNA sequences to test the taxonomic validity of Clinostomum complanatum Rudolphi, 1814 in fish-eating birds and freshwater fishes in Mexico, with the description of a new species. Parasitol Res 112:2855–2870.  https://doi.org/10.1007/s00436-013-3457-5 CrossRefPubMedGoogle Scholar
  63. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337.  https://doi.org/10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  64. Singh N, Chaudhary A, Singh HS (2015) Molecular phylogeny of nematodes (Oxyurida: Travassosinematidae) from orthoptera (Gryllotalpidae) inferred by mitochondrial cytochrome C oxidase subunit 1 gene. Bioinformation 11:343–347.  https://doi.org/10.6026/97320630011343 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sites JW Jr, Marshall JC (2003) Delimiting species: a renaissance issue in systematic biology. Trends Ecol Evol 18:462–470.  https://doi.org/10.1016/S0169-5347(03)00184-8 CrossRefGoogle Scholar
  66. Solórzano-García B, Nadler SA, Pérez-Ponce de León G (2016) Pinworm diversity in free-ranging howler monkeys (Alouatta spp.) in Mexico: morphological and molecular evidence for two new Trypanoxyuris species (Nematoda: Oxyuridae). Parasitol Int 65:401–411.  https://doi.org/10.1016/j.parint.2016.05.016 CrossRefPubMedGoogle Scholar
  67. StatSoft Inc. (2005) STATISTICA (data analysis software system), version 7.1. http://www.statsoft.com. Accessed Feb 2018
  68. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Templeton AR (1989) The meaning of species and speciation: A genetic perspective. In: Otte DD, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, pp 3–27Google Scholar
  70. Thompson JD, Higgins HG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  71. Will KP, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851.  https://doi.org/10.1080/10635150500354878 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Omar Lagunas-Calvo
    • 1
    • 2
  • Ana Santacruz
    • 2
    • 3
  • David Iván Hernández-Mena
    • 2
    • 3
  • Gerardo Rivas
    • 1
  • Gerardo Pérez-Ponce de León
    • 3
  • Rogelio Aguilar-Aguilar
    • 1
    Email author return OK on get
  1. 1.Departamento de Biología Comparada, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations