Parasitology Research

, Volume 118, Issue 2, pp 607–615 | Cite as

Anti-Trichomonas vaginalis activity of chalcone and amino-analogues

  • Márcia Rodrigues Trein
  • Lígia Rodrigues e Oliveira
  • Graziela Vargas Rigo
  • Mayara Aparecida Rocha Garcia
  • Brenda Petro-Silveira
  • Danielle da Silva Trentin
  • Alexandre José Macedo
  • Luis Octávio Regasini
  • Tiana TascaEmail author
Protozoology - Original Paper


Trichomoniasis is the most common non-viral sexually transmitted disease worldwide and can lead to serious consequences in reproductive health, cancer, and HIV acquisition. The current approved treatment present adverse effects and drug resistance data on this neglected parasitic infection is underestimated. Chalcones are a family of molecules that present biological applications, such as activity against many pathogenic organisms including protozoan pathogens. Chalcone (1) and three amino-analogues (24) were synthesized by Claisen–Schmidt condensation reaction and had their activity evaluated against the parasitic protozoan Trichomonas vaginalis. This bioassay indicated the presence and position of the amino group on ring A was crucial for anti-T. vaginalis activity. Among these, 3′-aminochalcone (3) presented the most potent effect and showed high cytotoxicity against human vaginal cells. On the other hand, 3 was not able to exhibit toxicity against Galleria mellonella larvae, as well as the hemolytic effect on human erythrocytes. Trophozoites of T. vaginalis were treated with 3, and did not present significant reactive oxygen species (ROS) accumulation, but induced a significantly higher ROS accumulation in human neutrophils after co-incubation. T. vaginalis pyruvate:ferredoxin oxidoreductase (PFOR) and β-tubulin gene expression was not affected by 3.


Trichomonas vaginalis Trichomoniasis Chalcone Antiprotozoal Antiparasitic 



Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), Marine Biotechnology Program (A.J.M., RedeMarAtivo, grant 408578/2013–0) and Universal Program (D.S.T., grant 443150/2014–1) supported this study. A.J.M., L.O.R, and T.T. thank CNPq for researcher fellowships (grants 303353/2016–3, 306251/2016–7, 312292/2017–1, respectively).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6164_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1187 kb)


  1. Alderete JF, Garza GE (1985) Specific nature of Trichomonas vaginalis parasitism of host cell surfaces. Infect Immun 50:701–708Google Scholar
  2. Anthwal A, Rajesh UC, Rawat MS, Kushwaha B, Maikhuri JP, Sharma VL, Gupta G, Rawat DS (2014) Novel metronidazole-chalcone conjugates with potential to counter drug resistance in Trichomonas vaginalis. Eur J Med Chem 79:89–94CrossRefGoogle Scholar
  3. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89Google Scholar
  4. Browne N, Heelan M, Kavanagh K (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4(7):597–603CrossRefGoogle Scholar
  5. Büyükgüzel E, Büyükgüzel K, Snela M, Erdem M, Radtke K, Ziemnicki K, Adamski Z (2013) Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell Biol Toxicol 29(2):117–129CrossRefGoogle Scholar
  6. Chen M, Zhai L, Christensen SB, Theander TB, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 45:2023–2029CrossRefGoogle Scholar
  7. Cherpes TL, Wiesenfeld HC, Melan MA, Kant JA, Cosentino LA, Meyn LA, Hillier SL (2006) The associations between pelvic inflammatory disease, Trichomonas vaginalis infection, and positive herpes simplex virus type 2 serology. Sex Transm Dis 33:747–752CrossRefGoogle Scholar
  8. Cotch MF, Pastorek JG 2nd, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG (1997) Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis 24(6):353–360CrossRefGoogle Scholar
  9. Das M, Manna K (2016) Chalcone scaffold in anticancer armamentarium: a molecular insight. J Toxicol 2016:7651047Google Scholar
  10. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490CrossRefGoogle Scholar
  11. dos Santos O, de Vargas Rigo G, Frasson AP, Macedo AJ, Tasca T (2015) Optimal reference genes for gene expression normalization in Trichomonas vaginalis. PLoS One 10:e0138331CrossRefGoogle Scholar
  12. Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533CrossRefGoogle Scholar
  13. Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 17:2002–2008CrossRefGoogle Scholar
  14. Grodstein F, Goldman MB, Cramer DW (1993) Relation of tubal infertility to history of sexually transmitted diseases. Am J Epidemiol 137:577–584CrossRefGoogle Scholar
  15. Ignasiak K, Maxwell A (2017) Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res Notes 10(1):428CrossRefGoogle Scholar
  16. Iqbal H, Prabhakar V, Sangith A, Chandrika B, Balasubramanian R (2014) Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med Chem Res 23:4383–4394CrossRefGoogle Scholar
  17. Karimi-Sales E, Mohaddes G, Alipour MR (2018) Chalcones as putative hepatoprotective agents: preclinical evidence and molecular mechanisms. Pharmacol Res 129:177–187CrossRefGoogle Scholar
  18. Kavanagh K, Fallon JP (2010) Galleria mellonella larvae as models for studying fungal virulence. Fungal Biol Rev 24:79–83CrossRefGoogle Scholar
  19. Kirkcaldy RD, Augostini P, Asbel LE, Bernstein KT, Kerani RP, Mettenbrink CJ, Pathela P, Schwebke JR, Secor WE, Workowski KA, Davis D, Braxton J, Weinstock HS (2012) Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD surveillance network, 2009-2010. Emerg Infect Dis 18:939–943CrossRefGoogle Scholar
  20. Kissinger P, Adamski A (2013) Trichomoniasis and HIV interactions: a review. Sex Transm Infect 89:426–433CrossRefGoogle Scholar
  21. Kulda J (1999) Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol 29:199–212CrossRefGoogle Scholar
  22. Land KM, Clemens DL, Johnson PJ (2001) Loss of multiple hydrogenosomal proteins associated with organelle metabolism and high-level drug resistance in trichomonads. Exp Parasitol 97:102–110CrossRefGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  24. Mahapatra DK, Bharti SK, Asati V (2015) Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem 101:496–524CrossRefGoogle Scholar
  25. Mirzaei H, Emami S (2016) Recent advances of cytotoxic chalconoids targeting tubulin polymerization: synthesis and biological activity. Eur J Med Chem 121:610–639CrossRefGoogle Scholar
  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  27. Noël JC, Fayt I, Romero-Munoz MR, Simon P, Engohan-Aloghe C (2010) High prevalence of high-risk human papillomavirus infection among women with Trichomonas vaginalis infection on monolayer cytology. Arch Gynecol Obstet 282:503–505CrossRefGoogle Scholar
  28. Popoola OK, Marnewick JL, Rautenbach F, Ameer F, Iwuoha EI, Hussein AA (2015) Inhibition of oxidative stress and skin aging-related enzymes by prenylated chalcones and other flavonoids from Helichrysum teretifolium. Molecules 20:7143–7155CrossRefGoogle Scholar
  29. Santos MB, Pinhanelli VC, Garcia MAP, Silva G, Baek SJ, França SC, Fachin AL, Martins M (2017) Antiproliferative and pro-apoptotic activities of 2′- and 4′-aminochalcones against tumor canine cells. Eur J Med Chem 138:884–889CrossRefGoogle Scholar
  30. Secor WE, Meites E, Starr MC, Workowski KA (2014) Neglected parasitic infections in the United States: trichomoniasis. Am J Trop Med Hyg 90:800–804CrossRefGoogle Scholar
  31. Singh G, Arora A, Mangat SS, Rani S, Kaur H, Goyal K, Sehgal R, Maurya IK, Tewari R, Choquesillo-Lazarte D, Sahoo S, Kaur N (2016) Design, synthesis and biological evaluation of chalconyl blended triazole allied organosilatranes as giardicidal and trichomonacidal agents. Eur J Med Chem 108:287–300CrossRefGoogle Scholar
  32. Song HO, Shin MH, Ahn MH, Min DY, Kim YS, Ryu JS (2008) Trichomonas vaginalis: reactive oxygen species mediates caspase-3 dependent apoptosis of human neutrophils. Exp Parasitol 118:59–65CrossRefGoogle Scholar
  33. Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF (2012) Trichomonosis, a common curable STI, and prostate carcinogenesis--a proposed molecular mechanism. PLoS Pathog 8:e1002801CrossRefGoogle Scholar
  34. Vieira PB, Tasca T, Secor WE (2017) Challenges and persistent questions in treatment of trichomoniasis. Curr Top Med Chem 17:1249–1265CrossRefGoogle Scholar
  35. Viikki M, Pukkala E, Nieminen P, Hakama M (2000) Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol 39:71–75CrossRefGoogle Scholar
  36. World Health Organisation (2012) Global incidence and prevalence of selected curable sexually transmitted infections – 2008. WHO, GenevaGoogle Scholar
  37. Wang Y, Gao H, Na XL, Dong SY, Dong HW, Yu J, Jia L, Wu YH (2016) Aniline induces oxidative stress and apoptosis of primary cultured hepatocytes. Int J Environ Res Public Health 13:1188CrossRefGoogle Scholar
  38. Zhai L, Blom J, Chen M, Christensen SB, Kharazmi A (1995) The antileishmanial agent licochalcone a interferes with the function of parasite mitochondria. Antimicrob Agents Chemother 39:2742–2748CrossRefGoogle Scholar
  39. Zhai L, Chen M, Blom J, Theander TG, Christensen SB, Kharazmi A (1999) The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 43:793–803CrossRefGoogle Scholar
  40. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810CrossRefGoogle Scholar
  41. Zeraik ML, Ximenes VF, Regasini LO, Dutra LA, Silva DH, Fonseca LM, Coelho D, Machado SA, Bolzani VS (2012) 4'-Aminochalcones as novel inhibitors of the chlorinating activity of myeloperoxidase. Curr Med Chem 19:5405–5413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Márcia Rodrigues Trein
    • 1
  • Lígia Rodrigues e Oliveira
    • 2
  • Graziela Vargas Rigo
    • 1
  • Mayara Aparecida Rocha Garcia
    • 2
  • Brenda Petro-Silveira
    • 1
  • Danielle da Silva Trentin
    • 3
  • Alexandre José Macedo
    • 4
  • Luis Octávio Regasini
    • 2
  • Tiana Tasca
    • 1
    Email author
  1. 1.Laboratório de Pesquisa em Parasitologia, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratory of Antibiotics and Chemotherapeutics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce)São Paulo State University (Unesp)São José do Rio PretoBrazil
  3. 3.Departamento de Ciências Básicas da SaúdeUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  4. 4.Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de FarmáciaUniversidade do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations