Parasitology Research

, Volume 118, Issue 1, pp 289–306 | Cite as

Characterization of metalloproteases and serine proteases of Toxoplasma gondii tachyzoites and their effect on epithelial cells

  • Carlos J. Ramírez-Flores
  • Rosalba Cruz-Mirón
  • Rossana Arroyo
  • Mónica E. Mondragón-Castelán
  • Tais Nopal-Guerrero
  • Sirenia González-Pozos
  • Emmanuel Ríos-Castro
  • Ricardo Mondragón-FloresEmail author
Immunology and Host-Parasite Interactions - Original Paper


Toxoplasma gondii can infect all nucleated cells from warm-blooded organisms. After infection, Toxoplasma spreads throughout the body and migrates across biological barriers, such as the intestinal and blood-brain barriers, as well as the placenta in pregnant women. The mechanisms for parasite dissemination are still unknown; however, proteases could play a role as a virulence factor. The aim of this study was to detect and to characterize proteases in whole-cell extracts and in excretion/secretion products from tachyzoites of the RH strain isolated from infected mice. Both fractions were analyzed by gelatin and casein zymography and by azocasein degradation. The biochemical characterization of proteases included standardization of optimal conditions for their activation, such as pH, the presence of cofactors, and a reducing agent. In both fractions, we detected at least nine gelatin-degrading metalloproteases in the range of 50 to 290 kDa. The proteases present in the excretion/secretion products were found as soluble proteins and not associated with exosome-like vesicles or other secretory vesicles. Moreover, by using casein zymography, it was possible to detect three serine proteases. Exposure of MDCK cells to excretion/secretion products modified the organization of the cell monolayer, and this effect was reverted after washing thoroughly with PBS and inhibition by metalloprotease and serine protease inhibitors. Proteomic analysis of excretion/secretion products identified 19 proteases. These findings suggest that tachyzoites of a highly virulent strain of Toxoplasma use a battery of proteases to modify the epithelium, probably as a strategy to facilitate their tissue dissemination.


Epithelial alteration Exosome-like vesicles Excretion/secretion products Proteases Toxoplasma gondii Zymography 



This research was supported by grants from Fundación Miguel Alemán A.C. and by Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) to RMF and scholarships from Consejo Nacional de Ciencia y Tecnología (CONACyT, México) to CJRF and RCM (296155 and 295997, respectively). We thank R. Mondragón-González from Departamento de Genética y Biología Molecular (CINVESTAV-IPN) for his comments and A. Chagolla-López from the Departamento de Biotecnología y Bioquímica (CINVESTAV-IPN, Irapuato) for her technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Supplementary material

436_2018_6163_MOESM1_ESM.pdf (435 kb)
Online Resource 1 The proteases detected by zymography are not oligomers and their activity was not affected by the solvents of the inhibitors. a Effect of 4 M urea in the proteolytic pattern of WE and E/S products. U- and U+ correspond to the sample without or with urea respectively. b Zymograms of WE products incubated with the solvents used to dissolve the inhibitors. (PDF 435 kb)
436_2018_6163_MOESM2_ESM.pdf (530 kb)
Online Resource 2 Zymography of whole-cell extracts (a) and excretion/secretion products (b) are similar. Different amounts of parasites were used to prepare the WE fractions or the E/S products. (PDF 529 kb)
436_2018_6163_MOESM3_ESM.pdf (166 kb)
Online Resource 3 Viability of the parasites under the conditions used for harvesting of E/S products. Micrographs of parasites maintained in PBS for 4 h at 37 °C and then stained with SYTOX-green dye. (PDF 165 kb)


  1. Ahn HJ, Song KJ, Son ES, Shin JC, Nam HW (2001) Protease activity and host cell binding of the 42-kDa rhoptry protein from Toxoplasma gondii after secretion. Biochem Biophys Res Commun 287:630–635CrossRefGoogle Scholar
  2. Almagro Armenteros JJ, Sonderby CK, Sonderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33:3387–3395CrossRefGoogle Scholar
  3. Barragán A, Sibley LD (2002) Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J Exp Med 195:1625–1633CrossRefGoogle Scholar
  4. Barragán A, Sibley LD (2003) Migration of Toxoplasma gondii across biological barriers. Trends Microbiol 11:426–430CrossRefGoogle Scholar
  5. Barragán A, Brossier F, Sibley LD (2005) Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7:561–568CrossRefGoogle Scholar
  6. Berthonneau J, Rodier MH, El Moudni B, Jacquemin JL (2000) Toxoplasma gondii: purification and characterization of an immunogenic metallopeptidase. Exp Parasitol 95:158–162CrossRefGoogle Scholar
  7. Buache E, Garnotel R, Aubert D, Gillery P, Villena I (2007) Reduced secretion and expression of gelatinase profile in Toxoplasma gondii-infected human monocytic cells. Biochem Biophys Res Commun 359:298–303CrossRefGoogle Scholar
  8. Buguliskis JS, Brossier F, Shuman J, Sibley LD (2010) Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog 6:e1000858CrossRefGoogle Scholar
  9. Chaparro JD, Cheng T, Tran UP, Andrade RM, Brenner SBT, Hwang G, Cohn S, Hirata K, McKerrow JH, Reed SL (2018) Two key cathepsins, TgCPB and TgCPL, are targeted by the vinyl sulfone inhibitor K11777 in in vitro and in vivo models of toxoplasmosis. PLoS One 13:e0193982CrossRefGoogle Scholar
  10. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372CrossRefGoogle Scholar
  11. Coelho DF, Saturnino TP, Fernandes FF, Mazzola PG, Silveira E, Tambourgi EB (2016) Azocasein substrate for determination of proteolytic activity: reexamining a traditional method using bromelain samples. Biomed Res Int 2016:8409183CrossRefGoogle Scholar
  12. Coffey MJ, Sleebs BE, Uboldi AD, Garnham A, Franco M, Marino ND, Panas MW, Ferguson DJ, Enciso M, O'Neill MT, Lopaticki S, Stewart RJ, Dewson G, Smyth GK, Smith BJ, Masters SL, Boothroyd JC, Boddey JA, Tonkin CJ (2015) An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell. Elife 4:e10809CrossRefGoogle Scholar
  13. Conseil V, Soete M, Dubremetz JF (1999) Serine protease inhibitors block invasion of host cells by Toxoplasma gondii. Antimicrob Agents Chemother 43:1358–1361CrossRefGoogle Scholar
  14. Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I (2006) CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 107:309–316CrossRefGoogle Scholar
  15. Cuellar P, Hernandez-Nava E, Garcia-Rivera G, Chavez-Munguia B, Schnoor M, Betanzos A, Orozco E (2017) Entamoeba histolytica EhCP112 dislocates and degrades Claudin-1 and Claudin-2 at tight junctions of the intestinal epithelium. Front Cell Infect Microbiol 7:372CrossRefGoogle Scholar
  16. de Sousa KP, Atouguia J, Silva MS (2010) Partial biochemical characterization of a metalloproteinase from the bloodstream forms of Trypanosoma brucei brucei parasites. Protein J 29:283–289CrossRefGoogle Scholar
  17. Dou Z, Coppens I, Carruthers VB (2013) Non-canonical maturation of two papain-family proteases in Toxoplasma gondii. J Biol Chem 288:3523–3534CrossRefGoogle Scholar
  18. Dou Z, McGovern OL, Di Cristina M, Carruthers VB (2014) Toxoplasma gondii ingests and digests host cytosolic proteins. MBio 5:e01188–e01114CrossRefGoogle Scholar
  19. Escotte-Binet S, Huguenin A, Aubert D, Martin AP, Kaltenbach M, Florent I, Villena I (2018) Metallopeptidases of Toxoplasma gondii: in silico identification and gene expression. Parasite 25:26CrossRefGoogle Scholar
  20. Gimenez MI, Studdert CA, Sanchez JJ, De Castro RE (2000) Extracellular protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 4:181–188CrossRefGoogle Scholar
  21. Hajagos BE, Turetzky JM, Peng ED, Cheng SJ, Ryan CM, Souda P, Whitelegge JP, Lebrun M, Dubremetz JF, Bradley PJ (2012) Molecular dissection of novel trafficking and processing of the Toxoplasma gondii rhoptry metalloprotease toxolysin-1. Traffic 13:292–304CrossRefGoogle Scholar
  22. Han Y, Zhou A, Lu G, Zhao G, Sha W, Wang L, Guo J, Zhou J, Zhou H, Cong H, He S (2017) DNA vaccines encoding Toxoplasma gondii Cathepsin C 1 induce protection against toxoplasmosis in mice. Korean J Parasitol 55:505–512CrossRefGoogle Scholar
  23. Harker KS, Ueno N, Lodoen MB (2015) Toxoplasma gondii dissemination: a parasite's journey through the infected host. Parasite Immunol 37:141–149CrossRefGoogle Scholar
  24. Hernández-Gutiérrez R, Ávila-González L, Ortega-López J, Cruz-Talonia F, Gómez-Gutiérrez G, Arroyo R (2004) Trichomonas vaginalis: characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions. Exp Parasitol 107:125–135CrossRefGoogle Scholar
  25. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202CrossRefGoogle Scholar
  26. Jia H, Nishikawa Y, Luo Y, Yamagishi J, Sugimoto C, Xuan X (2010) Characterization of a leucine aminopeptidase from Toxoplasma gondii. Mol Biochem Parasitol 170:1–6CrossRefGoogle Scholar
  27. Khan NA, Siddiqui R (2009) Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. Int J Parasitol 39:1611–1616CrossRefGoogle Scholar
  28. Lagal V, Binder EM, Huynh MH, Kafsack BF, Harris PK, Diez R, Chen D, Cole RN, Carruthers VB, Kim K (2010) Toxoplasma gondii protease TgSUB1 is required for cell surface processing of micronemal adhesive complexes and efficient adhesion of tachyzoites. Cell Microbiol 12:1792–1808CrossRefGoogle Scholar
  29. Laliberte J, Carruthers VB (2011) Toxoplasma gondii toxolysin 4 is an extensively processed putative metalloproteinase secreted from micronemes. Mol Biochem Parasitol 177:49–56CrossRefGoogle Scholar
  30. Leroux LP, Dasanayake D, Rommereim LM, Fox BA, Bzik DJ, Jardim A, Dzierszinski FS (2015) Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages. Int J Parasitol 45:319–332CrossRefGoogle Scholar
  31. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719CrossRefGoogle Scholar
  32. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7:789–804CrossRefGoogle Scholar
  33. Louie K, Nordhausen R, Robinson TW, Barr BC, Conrad PA (2002) Characterization of Neospora caninum protease, NcSUB1 (NC-P65), with rabbit anti-N54. J Parasitol 88:1113–1119CrossRefGoogle Scholar
  34. Madanan MG, Mechoor A (2017) Detection and characterization of bacterial proteinases using zymography. Methods Mol Biol 1626:103–114CrossRefGoogle Scholar
  35. McGwire BS, Chang KP, Engman DM (2003) Migration through the extracellular matrix by the parasitic protozoan Leishmania is enhanced by surface metalloprotease gp63. Infect Immun 71:1008–1010CrossRefGoogle Scholar
  36. Mendez OA, Koshy AA (2017) Toxoplasma gondii: entry, association, and physiological influence on the central nervous system. PLoS Pathog 13:e1006351CrossRefGoogle Scholar
  37. Miller SA, Thathy V, Ajioka JW, Blackman MJ, Kim K (2003) TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase. Mol Microbiol 49:883–894CrossRefGoogle Scholar
  38. Miranda K, Pace DA, Cintron R, Rodrigues JC, Fang J, Smith A, Rohloff P, Coelho E, de Haas F, de Souza W, Coppens I, Sibley LD, Moreno SN (2010) Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 76:1358–1375CrossRefGoogle Scholar
  39. Mondragón R, Frixione E (1996) Ca(2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. J Eukaryot Microbiol 43:120–127CrossRefGoogle Scholar
  40. Monte JFS, Moreno CJG, Monteiro J, de Oliveira Rocha HA, Ribeiro AR, Silva MS (2017) Use of zymography in trypanosomiasis studies. Methods Mol Biol 1626:213–220CrossRefGoogle Scholar
  41. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262CrossRefGoogle Scholar
  42. Nogueira de Melo AC, de Souza EP, Elias CG, dos Santos AL, Branquinha MH, d'Avila-Levy CM, dos Reis FC, Costa TF, Lima AP, de Souza Pereira MC, Meirelles MN, Vermelho AB (2010) Detection of matrix metallopeptidase-9-like proteins in Trypanosoma cruzi. Exp Parasitol 125:256–263CrossRefGoogle Scholar
  43. Nogueira AR, Leve F, Morgado-Diaz J, Tedesco RC, Pereira MC (2016) Effect of Toxoplasma gondii infection on the junctional complex of retinal pigment epithelial cells. Parasitology 143:568–575CrossRefGoogle Scholar
  44. Oliveira-Jr FO, Alves CR, Silva FS, Cortes LM, Toma L, Boucas RI, Aguilar T, Nader HB, Pereira MC (2013) Trypanosoma cruzi heparin-binding proteins present a flagellar membrane localization and serine proteinase activity. Parasitology 140:171–180CrossRefGoogle Scholar
  45. Piña-Vázquez C, Reyes-López M, Ortíz-Estrada G, de la Garza M, Serrano-Luna J (2012) Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012:1–24CrossRefGoogle Scholar
  46. Potempa M, Potempa J (2012) Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem 393:873–888CrossRefGoogle Scholar
  47. Prato M, Giribaldi G, Polimeni M, Gallo V, Arese P (2005) Phagocytosis of hemozoin enhances matrix metalloproteinase-9 activity and TNF-alpha production in human monocytes: role of matrix metalloproteinases in the pathogenesis of falciparum malaria. J Immunol 175:6436–6442CrossRefGoogle Scholar
  48. Que X, Ngo H, Lawton J, Gray M, Liu Q, Engel J, Brinen L, Ghosh P, Joiner KA, Reed SL (2002) The cathepsin B of Toxoplasma gondii, toxopain-1, is critical for parasite invasion and rhoptry protein processing. J Biol Chem 277:25791–25797CrossRefGoogle Scholar
  49. Que X, Engel JC, Ferguson D, Wunderlich A, Tomavo S, Reed SL (2007) Cathepsin Cs are key for the intracellular survival of the protozoan parasite, Toxoplasma gondii. J Biol Chem 282:4994–5003CrossRefGoogle Scholar
  50. Rothen-Rutishauser B, Kramer SD, Braun A, Gunthert M, Wunderli-Allenspach H (1998) MDCK cell cultures as an epithelial in vitro model: cytoskeleton and tight junctions as indicators for the definition of age-related stages by confocal microscopy. Pharm Res 15:964–971CrossRefGoogle Scholar
  51. Saboia-Vahia L, Borges-Veloso A, Mesquita-Rodrigues C, Cuervo P, Dias-Lopes G, Britto C, Silva AP, De Jesus JB (2013) Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus. Parasit Vectors 6:50CrossRefGoogle Scholar
  52. Saboia-Vahia L, Cuervo P, Borges-Veloso A, de Souza NP, Britto C, Dias-Lopes G, De Jesus JB (2014) The midgut of Aedes albopictus females expresses active trypsin-like serine peptidases. Parasit Vectors 7:253CrossRefGoogle Scholar
  53. Sampieri CL, de la Pena S, Ochoa-Lara M, Zenteno-Cuevas R, Leon-Cordoba K (2010) Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis. World J Gastroenterol 16:1500–1505CrossRefGoogle Scholar
  54. Schuindt SH, Oliveira BC, Pimentel PM, Resende TL, Retamal CA, DaMatta RA, Seipel D, Arnholdt AC (2012) Secretion of multi-protein migratory complex induced by Toxoplasma gondii infection in macrophages involves the uPA/uPAR activation system. Vet Parasitol 186:207–215CrossRefGoogle Scholar
  55. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefGoogle Scholar
  56. Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, Rosenthal PJ (2018) Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 12:e0006512CrossRefGoogle Scholar
  57. Song KJ, Nam HW (2003) Protease activity of 80 kDa protein secreted from the apicomplexan parasite Toxoplasma gondii. Korean J Parasitol 41:165–169CrossRefGoogle Scholar
  58. Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258CrossRefGoogle Scholar
  59. Tork SE, Shahein YE, El-Hakim AE, Abdel-Aty AM, Aly MM (2016) Purification and partial characterization of serine-metallokeratinase from a newly isolated Bacillus pumilus NRC21. Int J Biol Macromol 86:189–196CrossRefGoogle Scholar
  60. Wilkesman J (2017) Cysteine protease zymography: brief review. Methods Mol Biol 1626:25–31CrossRefGoogle Scholar
  61. Zhao G, Zhou A, Lv G, Meng M, Sun M, Bai Y, Han Y, Wang L, Zhou H, Cong H, Zhao Q, Zhu XQ, He S (2013) Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis 13:207CrossRefGoogle Scholar
  62. Zhao G, Song X, Kong X, Zhang N, Qu S, Zhu W, Yang Y, Wang Q (2017) Immunization with Toxoplasma gondii aspartic protease 3 increases survival time of infected mice. Acta Trop 171:17–23CrossRefGoogle Scholar
  63. Zheng J, Cheng Z, Jia H, Zheng Y (2016) Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Sci Rep 6:34448CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carlos J. Ramírez-Flores
    • 1
  • Rosalba Cruz-Mirón
    • 1
  • Rossana Arroyo
    • 2
  • Mónica E. Mondragón-Castelán
    • 1
  • Tais Nopal-Guerrero
    • 1
  • Sirenia González-Pozos
    • 3
  • Emmanuel Ríos-Castro
    • 4
  • Ricardo Mondragón-Flores
    • 1
    Email author
  1. 1.Departamento de BioquímicaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Ciudad de MéxicoMexico
  2. 2.Departamento de Infectómica y Patogénesis MolecularCINVESTAV-IPNCiudad de MéxicoMexico
  3. 3.Unidad de Microscopía Electrónica, LaNSE, CINVESTAV-IPNCiudad de MéxicoMexico
  4. 4.Unidad de Genómica, Proteómica y Metabolómica, LaNSE, CINVESTAV-IPNCiudad de MéxicoMexico

Personalised recommendations