Advertisement

Parasitology Research

, Volume 118, Issue 1, pp 355–361 | Cite as

Clone-based haplotyping of Giardia intestinalis assemblage B human isolates

  • Lenka LecováEmail author
  • Pavla Tůmová
  • Eva Nohýnková
Protozoology - Short Communication
  • 53 Downloads

Abstract

The level of genetic variability of Giardia intestinalis clinical isolates is an intensively studied and discussed issue within the scientific community. Our collection of G. intestinalis human isolates includes six in vitro-cultured isolates from assemblage B, with extensive genetic variability. Such variability prevents the precise genotype characterisation by the multi-locus genotyping (MLG) method commonly used for assemblage A. It was speculated that the intra-assemblage variations represent a reciprocal genetic exchange or true mixed infection. Thus, we analysed gene sequences of the molecular clones of the assemblage B isolates, each representing a single DNA molecule (haplotype) to determine whether the polymorphisms are present within individual haplotypes. Our results, which are based on the analysis of three standard genetic markers (bg, gdh, tpi), point to haplotype diversity and show numerous single nucleotide polymorphisms (SNPs) mostly in codon wobble positions. We do not support the recombinatory origin of the detected haplotypes. The point mutations tolerated by mismatch repair are the possible cause for the detected sequence divergence. The precise sub-genotyping of assemblage B will require finding more conservative genes, as the existing ones are hypervariable in most isolates and prevent their molecular and epidemiological characterisation.

Keywords

Assemblage B Giardia intestinalis Genetic variability Haplotypes Molecular cloning 

Notes

Financial support

This study was supported by the Czech Health Research Council (Grant No. 15-33369A).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

References

  1. Ankarklev J, Svärd SG, Lebbad M (2012) Allelic sequence heterozygosity in single Giardia parasites. BMC Microbiol 12(65):1–10.  https://doi.org/10.1186/1471-2180-12-65 Google Scholar
  2. Cacciò SM, Beck R, Lalle M, Marinculic A, Pozio E (2008) Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol 38(13):1523–1531.  https://doi.org/10.1016/j.ijpara.2008.04.008 CrossRefGoogle Scholar
  3. Chakraborty P, Pankajam AV, Lin G, Dutta A, Nandanan KG, Tekkedil MM, Shinohara A, Steinmetz LM, Thazath NK (2017) Modulating crossover frequency and interference for obligate crossovers in Saccharomyces cerevisiae meiosis. Genes Genomes Genet 7(5):1511–1524.  https://doi.org/10.1534/g3.117.040071 Google Scholar
  4. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7(10):e46688.  https://doi.org/10.1371/journal.pone.0046688 CrossRefGoogle Scholar
  5. Faria CP, Zanini GM, Dias GS, da Silva S, do Céu Sousa M (2017) New multilocus genotypes of Giardia lamblia human isolates. Infect Genet Evol 54:128–137.  https://doi.org/10.1016/j.meegid.2017.06.028 CrossRefGoogle Scholar
  6. Feng Y, Xiao L (2011) Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 24(1):110–140.  https://doi.org/10.1128/CMR.00033-10 CrossRefGoogle Scholar
  7. Franzèn O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, Palm D, Andersson JO, Andersson B, Svärd SG (2009) Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5(8):e1000560.  https://doi.org/10.1371/journal.ppat.1000560 CrossRefGoogle Scholar
  8. Kosuwin R, Putaporntip C, Pattanawong U, Jongwutiwes S (2010) Clonal diversity in Giardia intestinalis isolates from Thailand: evidences of intragenic recombination and purifying selection at the beta giardin locus. Gene 449:1–9.  https://doi.org/10.1016/j.gene.2009.09.010 CrossRefGoogle Scholar
  9. Lasek-Nesselquist E, Welch DM, Thompson RC, Steuart RF, Sogin ML (2009) Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol 56:504–518.  https://doi.org/10.1111/j.1550-7408.2009.00443.x CrossRefGoogle Scholar
  10. Lebbad M, Petersson I, Karlsson L, Botero-Kleiven S, Andersson JO, Svenungsson B, Svärd SG (2011) Multilocus genotyping of human Giardia isolates suggests limited zoonotic transmission and association between assemblage B and flatulence in children. PLoS Negl Trop Dis 5(8):e1262.  https://doi.org/10.1371/journal.pntd.0001262 CrossRefGoogle Scholar
  11. Lecová L, Weisz F, Tůmová P, Tolarová V, Nohýnková E (2018) The first multilocus genotype analysis of Giardia intestinalis in humans in the Czech Republic. Parasitology 145(12):1577–1587.  https://doi.org/10.1017/S0031182018000409 CrossRefGoogle Scholar
  12. Lin Z, Nei M, Ma H (2007) The origins and early evolution of DNA mismatch repair genes - multiple horizontal gene transfers and co-evolution. Nucleic Acids Res 35(22):7591–7603.  https://doi.org/10.1093/nar/gkm921 CrossRefGoogle Scholar
  13. Morrison HG, Svärd S (2011) Genomics of Giardia. In: Luján HD, Svärd S (eds) Giardia a model organism. Springer, Wien, pp 95–101Google Scholar
  14. Robertson LJ, Hermansen L, Gjerde BK, Strand E, Alvsvåg JO, Langeland N (2006) Application of genotyping during an extensive outbreak of waterborne giardiasis in Bergen, Norway, during autumn and winter 2004. Appl Environ Microbiol 72(3):2212–2217.  https://doi.org/10.1128/AEM.72.3.2212-2217.2006 CrossRefGoogle Scholar
  15. Ryan U, Cacciò SM (2013) Zoonotic potential of Giardia. Int J Parasitol 43(12–13):943–956.  https://doi.org/10.1016/j.ijpara.2013.06.001 CrossRefGoogle Scholar
  16. Siripattanapipong S, Leelayoova S, Mungthin M, Thompson RC, Boontanom P, Saksirisamphant W, Tan-Ariya P (2011) Clonal diversity of the glutamate dehydrogenase gene in Giardia duodenalis from Thai isolates: evidence of genetic exchange or Mixed Infections? BMC Microbiol 11:206.  https://doi.org/10.1186/1471-2180-11-206 CrossRefGoogle Scholar
  17. Sprong H, Cacciò SM, der Giessen JWB V, on behalf of the ZOOPNET network and partners (2009) Identification of zoonotic genotypes of Giardia duodenalis. PLoS Negl Trop Dis 3(12):e588.  https://doi.org/10.1371/journal.pntd.0000558 CrossRefGoogle Scholar
  18. Tibayrenc M, Ayala FJ (2014) Cryptosporidium, Giardia, Cryptococcus, Pneumocystis genetic variability: cryptic biological species or clonal near-clades? PLoS Pathog 10(4):e1003908.  https://doi.org/10.1371/journal.ppat.1003908 CrossRefGoogle Scholar
  19. Tůmová P, Mazánek L, Lecová L, Dluhošová J, Typovská H, Kotrašová V, Ticháčková V, Nohýnková E (2018) A natural zoonotic giardiasis: infection of a child via Giardia cysts in pet chinchilla droppings. Parasitol Int 67(6):759–762.  https://doi.org/10.1016/j.parint.2018.07.010 CrossRefGoogle Scholar
  20. Wielinga C, Ryan U, Andrew Thompson RC, Monis P (2011) Multi-locus analysis of Giardia duodenalis intra-Assemblage B substitution patterns in cloned culture isolates suggests sub-Assemblage B analyses will require multi-locus genotyping with conserved and variable genes. Int J Parasitol 41(5):495–503.  https://doi.org/10.1016/j.ijpara.2010.11.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Immunology and Microbiology, First Faculty of MedicineCharles UniversityPragueCzech Republic

Personalised recommendations