Parasitology Research

, Volume 118, Issue 2, pp 599–606 | Cite as

Pathological and molecular characterization of avian malaria in captive Magellanic penguins (Spheniscus magellanicus) in South America

  • Paula Augusto Taunde
  • Matheus Viezzer BianchiEmail author
  • Lívia Perles
  • Fernando Soares da Silva
  • Tainã Normanton Guim
  • Renan Alves Stadler
  • Marcos Rogério André
  • David Driemeier
  • Saulo Petinatti Pavarini
Protozoology - Original Paper


Avian malaria is a mosquito-borne disease that affects multiple avian species and is caused by protozoans of the genus Plasmodium. An avian malaria infection caused by Plasmodium sp. in Magellanic penguins (Spheniscus magellanicus) with high mortality is described in a zoo in Southern Brazil. Clinically, three birds presented signs of inappetence, anorexia, pale mucosa, dyspnea, and opisthotonus, with death in a clinical course of 5–8 h. At the necropsy, all birds exhibited pale mucosa, marked splenomegaly and hepatomegaly, in addition to moderate leptomeningeal blood vessels ingurgitation in the brain. Microscopically, multiple exoerythrocytic meronts were observed in the cytoplasm of endothelial cells in the spleen, liver, heart, lungs, brain, kidneys, and pancreas. The spleen had a multifocal perivascular inflammatory infiltrate of lymphocytes, plasma cells, and macrophages, which also exhibited hemosiderosis and erythrophagocytosis. The liver had a multifocal periportal inflammatory infiltrate of lymphocytes, macrophages, and plasma cells, in addition to marked hemosiderosis in the hepatic sinusoids. Fragments of spleen, liver, brain, skeletal muscle, and lung were tested by the polymerase chain reaction technique for the detection of a fragment of the cytochrome B gene from haemosporidians, which resulted positive for Plasmodium spp. After sequencing, the samples were phylogenetically associated to Plasmodium sp. detected in Turdus albicollis (KU562808) in Brazil and matched to the lineage TURALB01 previously detected in T. albicollis. Avian malaria infections caused by Plasmodium sp. of lineage TURALB01 may occur in S. magellanicus with high mortality, and, thus, it is essential to detect and characterize the agent involved to obtain the differential diagnosis of the condition.


Culicidae Haemosporidian parasites Morphologic analyses Phylogenetic analyses Plasmodium spp. 


Compliance with ethical standards

The authors declared that there was explicit owner informed consent for inclusion of animals in this study. All co-authors approved the manuscript and its submission to the journal.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Bak UB, Park JC, Lim YJ (1984) An outbreak of malaria in penguins at the Farm-land zoo. Korean J Parasitol 22(2):267–272CrossRefGoogle Scholar
  2. Belo NO, Passos LF, Júnior LM et al (2009) Avian malaria in captive psittacine birds: detection by microscopy and 18S rRNA gene amplification. Prev Vet Med 88:220–224CrossRefGoogle Scholar
  3. Bencke GA (2001) Lista de referência das aves do Rio Grande do Sul. Fundação Zoobotânica do Rio Grande do Sul, Porto AlegreGoogle Scholar
  4. Bennett G, Lopes OS (1980) Blood parasites of some birds from São Paulo state, Brazil. Mem Inst Oswaldo Cruz 75:117–134CrossRefGoogle Scholar
  5. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358CrossRefGoogle Scholar
  6. Bueno MG, Lopez RPG, Menezes RMT et al (2010) Identification of Plasmodium relictum causing mortality in penguins (Spheniscus magellanicus) from São Paulo zoo, Brazil. Vet Parasitol 173:123–127CrossRefGoogle Scholar
  7. Cranfield MR, Beall FB, Skjoldager MT, Ialeggio DM (1991) Avian malaria. Spheniscus Penguin Newslett 4:5–7Google Scholar
  8. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772CrossRefGoogle Scholar
  9. Dinhopl N, Nedorost N, Mostegl MM, Weissenbacher-Lang C, Weissenböck H (2015) In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria. Parasitol Res 114:1455–1462CrossRefGoogle Scholar
  10. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I Accuracy Assessment. Genome Res 8(3):175–1985CrossRefGoogle Scholar
  11. Fecchio A, Marini MA, Braga EM (2007) Low prevalence of blood parasites in Cerrado birds, Central Brazil. Neo Biol Conserv 2:127–135Google Scholar
  12. Fecchio A, Lima MR, Silveira P, Braga EM, Marini MA (2011) High prevalence of blood parasites in social birds from a neotropical savanna in Brazil. Emu - Aust Ornithol 111:132–138CrossRefGoogle Scholar
  13. Fecchio A, Pinheiro R, Felix G, Faria IP, Pinho JB, Lacorte GA, Braga EM, Farias IP, Aleixo A, Tkach VV, Collins MD, Bell JA, Weckstein JD (2018) Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography 41:505–515CrossRefGoogle Scholar
  14. Fix AS, Waterhouse C, Greiner EC, Stoskopf MK (1988) Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildl Dis 24(4):610–619CrossRefGoogle Scholar
  15. García-Borboroglu P, Boersma PD, Ruoppolo V, Reyes L, Rebstock GA, Griot K, Heredia SR, Adornes AC, da Silva RP (2006) Chronic oil pollution harms Magellanic penguins in the Southwest Atlantic. Mar Pollut Bull 52:193–198CrossRefGoogle Scholar
  16. García-Borboroglu P, Boersma PD, Ruoppolo V, Pinho-da-Silva-Filho R, Corrado-Adornes A, Conte-Sena D, Velozo R, Myiaji-Kolesnikovas C, Dutra G, Maracini P, Carvalho-do-Nascimento C, Ramos-Júnior V, Barbosa L, Serra S (2010) Magellanic penguin mortality in 2008 along the SW Atlantic coast. Mar Pollut Bull 60:1652–1657CrossRefGoogle Scholar
  17. Grilo ML, Vanstreels RET, Wallace R et al (2016) Malaria in penguins – current perceptions. Avian Pathol 45(4):393–407CrossRefGoogle Scholar
  18. Grim KC, van der Merwe E, Sullivan M, Parsons N, McCutchan TF, Cranfield M (2003) Plasmodium juxtanucleare associated with mortality in black-footed penguin (Spheniscus demersus) admitted to a rehabilitation center. J Zoo Wildl Med 34:250–255CrossRefGoogle Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Hellgreen O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90(4):797–802CrossRefGoogle Scholar
  21. Iezhova TA, Valkiūnas G, Bairlein F (2005) Vertebrate host specificity of two avian malaria of the subgenus Novyella: Plasmodium nucleophilum and Plasmodium vaughani. J Parasitol 91:472–475CrossRefGoogle Scholar
  22. Katoh RY (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform:1–7Google Scholar
  23. Ko KN, Kang SC, Jung JY et al (2008) Avian malaria associated with Plasmodium spp. infection in a penguin in Jeju island. Korean J Vet Res 48(2):197–201Google Scholar
  24. Križanauskiené A, Hellgren O, Kosarev V et al (2006) Variation in host specificity between species of avian hemosporidian parasites: evidence from parasite morphology and cytochrome b gene sequences. J Parasitol 92:1319–1324CrossRefGoogle Scholar
  25. Levin II, Outlaw DC, Vargas HF, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195CrossRefGoogle Scholar
  26. Lima MR, Simpson L, Fecchio A, Kyaw CM (2010) Low prevalence of haemosporidian parasites in the introduced house sparrow (Passer domesticus) in Brazil. Acta Parasitol 55:297–303CrossRefGoogle Scholar
  27. Loiseau C, Iezhova TA, Valkiūnas G, Chasar A, Hutchinson A, Buermann W, Smith TB, Sehgal RNM (2010) Spatial variation of haemosporidian parasite infection in African rainforest bird species. J Parasitol 96:21–29CrossRefGoogle Scholar
  28. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), New Orleans, pp 1–8Google Scholar
  29. Palmer JL, McCutchan TF, Vargas FH et al (2013) Seroprevalence of malarial antibodies in Galapagos penguins (Spheniscus mendiculus). J Parasitol 99(5):770–776CrossRefGoogle Scholar
  30. Ribeiro SF, Sebaio F, Branquinho FCS, Braga EM (2005) Avian malaria in Brazilian passerine birds: parasitism detected by nested PCR using DNA from stained blood smears. Parasitol 3:261–267CrossRefGoogle Scholar
  31. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 12(19):1572–1574CrossRefGoogle Scholar
  32. Sallaberry-Pincheira N, Gonzalez-Acuña D, Herrera-Tello Y et al (2015) Molecular epidemiology of avian malaria in wild breeding colonies of Humboldt and Magellanic penguins in South America. Ecohealth 12:267–277CrossRefGoogle Scholar
  33. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467CrossRefGoogle Scholar
  34. Sebaio F, Braga EM, Branquinho F, Manica LT, Marini MA (2010) Blood parasites in Brazilian Atlantic Forest birds: effects of fragment size and habitat dependency. Bird Conserv Int 20:432–439CrossRefGoogle Scholar
  35. Silveira P, Belo NO, Lacorte GA, Kolesnikovas CK et al (2013) Parasitological and new molecular-phylogenetic characterization of the malaria parasite Plasmodium tejerai in south American penguins. Parasitol Int 62(2):165–171CrossRefGoogle Scholar
  36. Stover BC, Muller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11(7):1–9Google Scholar
  37. Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC Press, Boca RatonGoogle Scholar
  38. Vanstreels RET, Kolesnikovas CKM, Sandri S, Silveira P, Belo NO, Ferreira Junior FC, Epiphanio S, Steindel M, Braga ÉM, Catão-Dias JL (2014) Outbreak of avian malaria associated to multiple species of Plasmodium in Magellanic penguins undergoing rehabilitation in southern Brazil. PLoS One 9(12):e94994CrossRefGoogle Scholar
  39. Vanstreels RET, Silva-Filho RP, Kolesnikovas CKM et al (2015) Epidemiology and pathology of avian malaria in penguins undergoing rehabilitation in Brazil. Vet Res 46:30CrossRefGoogle Scholar
  40. Vanstreels RET, Braga EM, Catão-Dias JL (2016) Blood parasites of penguins: a critical review. Parasitol 143:931–956CrossRefGoogle Scholar
  41. Vanstreels RET, Uhart M, Rago V et al (2017) Do blood parasites infect Magellanic penguins (Spheniscus magellanicus) in the wild? Prospective investigation and climatogeographic considerations. Parasitol 144:698–705CrossRefGoogle Scholar
  42. Werther K, Luzzi MC, Gonçalves LR et al (2017) Arthropod-borne agents in wild Orinoco geese (Neochen jubata) in Brazil. Comp Immunol Microbiol Infect Dis 55:30–41CrossRefGoogle Scholar
  43. Woodworth-Lynas CB, Caines JR, Bennett GF (1989) Prevalence of avian Haematozoa in São Paulo state, Brazil. Mem Inst Oswaldo Cruz 84:515–526CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paula Augusto Taunde
    • 1
  • Matheus Viezzer Bianchi
    • 1
    Email author
  • Lívia Perles
    • 2
  • Fernando Soares da Silva
    • 1
  • Tainã Normanton Guim
    • 1
  • Renan Alves Stadler
    • 3
  • Marcos Rogério André
    • 2
  • David Driemeier
    • 1
  • Saulo Petinatti Pavarini
    • 1
  1. 1.Departamento de Patologia Clínica Veterinária, Setor de Patologia Veterinária, Faculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Departamento de Patologia Veterinária, Laboratório de Imunoparasitologia, Faculdade de Ciências Agrárias e Veterinárias (FCAV)Universidade do Estado de São Paulo (UNESP)JaboticabalBrazil
  3. 3.GramadoZooGramadoBrazil

Personalised recommendations