Parasitology Research

, Volume 118, Issue 1, pp 363–367 | Cite as

How does the bopyrid isopod Gyge branchialis interfere with trace metal bioaccumulation in the mud shrimp Upogebia cf. pusilla?

  • Annabelle DairainEmail author
  • Alexia Legeay
  • Valentine Gernigon
  • Xavier de Montaudouin
Immunology and Host-Parasite Interactions - Short Communication


Parasites are widespread in natural environments, and their impacts on the fitness of their host and, at a broader scale, on ecosystem functioning are well recognized. Over the last two decades, there has been an increasing interest in the effects of parasites in conjunction with other stressors, especially pollutants, on the health of organisms. For instance, parasites can interfere with the bioaccumulation process of contaminants in their host leading to parasitized organisms exhibiting lower pollutants burdens than unparasitized individuals for example. However, the mechanisms underlying these patterns are not well understood. This study examined how the bopyrid parasite Gyge branchialis could lower the cadmium (Cd) uptake of its mud shrimp host Upogebia cf. pusilla. When exposed to water-borne Cd, parasites were able to bioaccumulate this trace metal. However, the uptake of Cd by the parasite was low and cannot entirely explain the deficit of Cd contamination of the host. The weight of gills of parasitized organisms was significantly reduced compared with unparasitized organisms. We suggest that by reducing the surface for metal uptake, parasites could lower the contaminant burden of their host.


Host-parasite interactions Metal contamination Physiological alteration Mud shrimp 



The authors are grateful to the two anonymous referees for their help in improving the manuscript. Many thanks to Dr. Katie O’Dwyer (Galway-Mayo Institute of Technology) for the interesting comments and editing corrections of the manuscript. We are grateful to M. Mauran for her significant help during experiment. We thank the captain and the crewmembers of the R/V Planula IV (CNRS-INSU-FOF) for assistance in the field.


A.D. was supported by a doctoral grant of the French “Ministère de l’Enseignement Supérieur et de la Recherche” (Université de Bordeaux—2015/AUN/25).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Al Kaddissi S, Legeay A, Elia AC, Gonzalez P, Floriani M, Cavalie I, Massabuau J-C, Gilbin R, Simon O (2014) Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure. Environ Toxicol 29:893–907. CrossRefGoogle Scholar
  2. Baudrimont M, de Montaudouin X (2007) Evidence of an altered protective effect of metallothioneins after cadmium exposure in the digenean parasite-infected cockle (Cerastoderma edule). Parasitology 134:237. CrossRefGoogle Scholar
  3. Bergey L, Weis JS, Weis P (2002) Mercury uptake by the estuarine species Palaemonetes pugio and Fundulus heteroclitus compared with their parasites, Probopyrus pandalicola and Eustrongylides sp. Mar Pollut Bull 44:1046–1050. CrossRefGoogle Scholar
  4. Coors A, De Meester L (2008) Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. J Appl Ecol 45:1820–1828. CrossRefGoogle Scholar
  5. Dairain A, de Montaudouin X, Gonzalez P, Ciutat A, Baudrimont M, Maire O, Legeay A (2018) Do trace metal contamination and parasitism influence the activities of the bioturbating mud shrimp Upogebia cf. pusilla? Aquat Toxicol 204:46–58. CrossRefGoogle Scholar
  6. de Saint Laurent M, Le Loeuff P (1979) Crustacés décapodes Thalassinidea. I. Upogebiidae et Callianassidae. In: Résultats scientifiques des campagnes de la Calypso au large des côtes atlantiques africaines (1956 et 1959). Masson, Paris, pp 29–101Google Scholar
  7. Dworschak PC (1983) The biology of Upogebia pusilla (PETAGNA) (Decapoda, Thalassinidea) I. The burrows. Mar Ecol 4:19–43. CrossRefGoogle Scholar
  8. Dworschak PC (1987) Feeding behaviour of Upogebia pusilla and Callianassa tyrrhena (Crustacea, Decapoda, Thaliassinidea). Investig Pesq 51(1):421–429Google Scholar
  9. Evans DW, Irwin SWB, Fitzpatrick S (2001) The effect of digenean (Platyhelminthes) infections on heavy metal concentrations in Littorina littorea. J Mar Biol Assoc U K 81:349–350. CrossRefGoogle Scholar
  10. Felten V, Charmantier G, Mons R, Geffard A, Rousselle P, Coquery M, Garric J, Geffard O (2008) Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat Toxicol 86:413–425. CrossRefGoogle Scholar
  11. Holmstrup M, Bindesbøl A-M, Oostingh GJ, Duschl A, Scheil V, Köhler H-R, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762. CrossRefGoogle Scholar
  12. Nachev M, Sures B (2016) Environmental parasitology: parasites as accumulation bioindicators in the marine environment. J Sea Res 113:45–50. CrossRefGoogle Scholar
  13. Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421–422:3–16. CrossRefGoogle Scholar
  14. Pascal L (2017) Rôle de l’espèce ingénieure Upogebia pusilla dans le fonctionnement biogéochimique des écosystèmes intertidaux à herbier (Zostera noltei) du bassin d’Arcachon. PhD thesis, University of BordeauxGoogle Scholar
  15. Pascal L, de Montaudouin X, Grémare A, Maire O (2016) Dynamics of the Upogebia pusillaGyge branchialis marine host–parasite system. Mar Biol 163.
  16. Paul-Pont I, Gonzalez P, Baudrimont M, Jude F, Raymond N, Bourrasseau L, Le Goïc N, Haynes F, Legeay A, Paillard C, de Montaudouin X (2010) Interactive effects of metal contamination and pathogenic organisms on the marine bivalve Cerastoderma edule. Mar Pollut Bull 60:515–525. CrossRefGoogle Scholar
  17. Stier T, Drent J, Thieltges D (2015) Trematode infections reduce clearance rates and condition in blue mussels Mytilus edulis. Mar Ecol Prog Ser 529:137–144. CrossRefGoogle Scholar
  18. Sures B, Siddall R (1999) Pomphorhynchus laevis: the intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Exp Parasitol 93:66–72. CrossRefGoogle Scholar
  19. Tucker BW (1930) Memoirs: on the effects of an epicaridan parasite, Gyge branchialis, on Upogebia littoralis. J Cell Sci s2-74:1–118Google Scholar
  20. Tueros I, Borja Á, Larreta J, Rodríguez JG, Valencia V, Millán E (2009) Integrating long-term water and sediment pollution data, in assessing chemical status within the European water framework directive. Mar Pollut Bull 58:1389–1400. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ. Bordeaux, EPOC, UMR CNRS 5805TalenceFrance
  2. 2.Univ. Lyon IVilleurbanneFrance

Personalised recommendations